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APPROXIMATE BEST PROXIMITY FOR SET-VALUED

CONTRACTIONS IN METRIC SPACES

FAHIMEH MIRDAMADI∗, MEHDI ASADI∗ AND SOMAYEH ABBASI

Abstract. In this paper, we introduce the concept of set-valued cyclic almost
contraction mappings. The existence of approximate best proximity points for

such mappings on a metric space is established as well. We also obtain the
approximate best proximity for two cyclic set-valued nonlinear contraction

maps.

1. Introduction and preliminaries

Let X be a metric space and A,B be nonempty subsets of X. A mapping
T : A ∪ B → A ∪ B is said to be cyclic, whenever T (A) ⊂ B and T (B) ⊂ A. If
T : A ∪ B → A ∪ B is a cyclic mapping, then a point x ∈ A ∪ B is called a best
proximity point for T if d(x, T (x)) = d(A,B), where

d(A,B) = inf{d(x, y) : (x, y) ∈ A×B}.
A best proximity point also evolves as a generalization of the concept of fixed point
of mappings. Because if A ∩ B 6= ∅, every best proximity point is a fixed point of
T . Recently, many authors studied the existence of a best proximity point under
some suitable contraction conditions, for more details; see [1, 2, 7–11, 14, 15] and
references therein.

Another important and current branch of fixed point theory is investigating the
approximate fixed point property, for more details; see [4, 5, 12, 19] and references
therein.

The interest in approximate fixed point results arises naturally in probing into
some problems in economics and game theory, see [3,13] and references therein. Re-
cently, Mohsenalhosseni and Mazaheri [17] introduced the notion of approximate
best proximity point for single-valued cyclic maps as finding a point x ∈ A∪B such
that d(x, T (x)) ≤ d(A,B)+ε, for some ε > 0 and it is stronger than best proximity
point.
Our goal in this paper is to extend the concept of single-valued nonlinear almost con-
tractions to set-valued cyclic maps that was introduced by Berinde [5] and Ciric [6].
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We obtain the existence of approximate best proximity point for such maps in met-
ric spaces. Some existence results concerning approximate best proximity coincide
point property of the set-valued cyclic I-contractions T is also obtained. We also
prove some quantitative theorems regarding the set of approximate best proximity
for set-valued almost I-contractions.

Now, we give some notions and definitions.
Let (X, d) be a metric space and P(X) and Cl(X) denote the families of all
nonempty subsets and nonempty closed subsets of X respectively. For any A,B ⊂
X, we consider

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

the Hausdorff metric on Cl(X) induced by the metric d.
Let X and Y be two topological Hausdorff spaces and T : X ( P(Y ) be a set-
valued mapping with nonempty values. Then T is said to be

• upper semi-continuous (u.s.c.) if, for each closed set B ⊂ Y ,

T−1(B) = {x ∈ X : T (x) ∩B 6= ∅}
is closed in X;

• lower semi-continuous (l.s.c.) if, for each open set B ⊂ Y ,

T−1(B) = {x ∈ X : T (x) ∩B 6= ∅}
is open in X;

• continuous if it is both u.s.c. and l.s.c.;
• closed if its graph Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)} is closed;

• compact if ClT (X) is a compact subset of Y .
We also use from notation ( for set-valued maps.

2. Main Results

In this section, first we prove the existence of an approximate best proximity
point for set-valued cyclic almost contraction map in metric spaces. Also, some
existence results concerning approximate best proximity coincidence point property
of the set-valued cyclic I-contractions T is also obtained. We begin with the notion
of set-valued cyclic almost contraction map.

Definition 2.1. Let (X, d) be a metric space, A and B be nonempty subsets of X.
Then a set-valued mapping T : A ∪B ( A ∪B is called a set-valued cyclic map if
T (A) ⊆ B and T (B) ⊆ A.

Note that T (A) = ∪{Tx : x ∈ A}.

Definition 2.2. Let (X, d) be a metric space, A and B be nonempty subsets of X.
Then a set-valued cyclic mapping T : A ∪B( A ∪B is called:
(1) a set-valued cyclic contraction (or set-valued cyclic k-contraction), if there exists
a number 0 < k < 1 such that

H(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B), ∀x ∈ A, y ∈ B.
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(2) a set-valued cyclic almost contraction or a set-valued cyclic (θ, L)-almost
contraction, if there exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + L.d(y, Tx) + (1− θ)d(A,B), ∀x ∈ A, y ∈ B.

Definition 2.3. Let A and B be nonempty subsets of a metric space X. Then a
set-valued map T : A ∪ B ( A ∪ B said to have an approximate best proximity
point property provided

inf
x∈X

d(x, Tx) = d(A,B)

or, equivalently, for any ε > 0, there exists xε ∈ A ∪B such that

d(xε, Txε) ≤ d(A,B) + ε

or, equivalently, for any ε > 0, there exists xε ∈ A ∪B such that

T (xε) ∩B(xε, d(A,B) + ε) 6= ∅,

where B(x, r) denotes a closed ball of radius r centered at x.

Theorem 2.4. Let A and B be nonempty subsets of a metric space X. Suppose
that T : A ∪ B ( A ∪ B is a cyclic set-valued map. If there exist two sequences
(xn) and (yn) such that xn ∈ A ∪B, yn ∈ T (xn) and

lim
n
d(xn, yn) = d(A,B).

Then T has approximate best proximity point x in A ∪B i.e.

d(x, T (x)) ≤ d(A,B) + ε

for any ε > 0.

Proof. Let ε > 0 be given and there exist xn ∈ A ∪ B and yn ∈ T (xn) such that
limn d(xn, yn) = d(A,B). So

∃N0 > 0 such that ∀n ≥ N0 : d(xn, yn) ≤ d(A,B) + ε.

If n = N0, then d(xN0
, yN0

) ≤ d(A,B) + ε. Thus d(xN0
, T (xN0

)) ≤ d(A,B) + ε and
so xN0

is an approximate best proximity. �

We first prove that every set-valued cyclic almost contraction has the approxi-
mate best proximity property.

Theorem 2.5. Let (X, d) be a metric space and A and B be nonempty subsets of
X. Suppose that T : A ∪ B ( A ∪ B is a closed-valued cyclic almost contraction.
Then T has approximate best proximity point property.

Proof. Choose x0 ∈ A ∪ B and x1 ∈ T (x0). Then by the definition of H, there
exists x2 ∈ T (x1) such that

d(x1, x2) ≤ H(T (x0), T (x1)) + θ.

Similarly, there exists x3 ∈ T (x2) such that

d(x2, x3) ≤ H(T (x1), T (x2)) + θ2.
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By following the same way, there exists a sequence {xn} in A∪B ∪ T (A∪B) such
that xn+1 ∈ T (xn) and

d(xn, xn+1) ≤ H(T (xn−1), T (xn)) + θn

≤ θd(xn−1, xn) + L.d(xn, T (xn−1)) + (1− θ)d(A,B) + θn

≤ θ(θd(xn−2, xn−1) + (1− θ)d(A,B) + θn−1) + (1− θ)d(A,B) + θn

= θ2d(xn−2, xn−1) + (1− θ2)d(A,B) + 2θn

...

≤ θnd(x0, x1) + (1− θn)d(A,B) + θn + ...+ θn

Thus

d(xn, xn+1) ≤ θnd(x0, x1) + (1− θn)d(A,B) + nθn,

hence, limn d(xn, xn+1) ≤ d(A,B). Also we have limn d(xn, xn+1) ≥ d(A,B), so

lim
n
d(xn, xn+1) = d(A,B).

Therefore, by Theorem 2.4, T has approximate best proximity point property. �

In the following example we show that T is a set-valued cyclic almost contraction
and T has approximate best proximity but it has not best proximity.

Example 2.6. Let A = [ 23 , 1] and B = [0, 12 ] with the Euclidean distance , and let
T (x) be defined as follows:

T (x) =

{
( 2
3 ,

5
6 ) if 0 ≤ x ≤ 1

2 ,
( 1
3 ,

3
8 ) if 2

3 ≤ x ≤ 1,

We have T is a set-valued cyclic almost contraction. Indeed, for every x ∈ A and
y ∈ B, we have H(T (x), T (y)) = 11

24 , d(y, T (x)) 6= 0 and d(A,B) = 1
6 and θ = 1

2 ,
we see that T is a set-valued cyclic almost contraction provided that L > 0 is large
enough. Also x = 1

2 is approximate best proximity of T , while T has not best
proximity.

Definition 2.7. [17] Let (X, d) be a metric space and A and B be nonempty subsets
of X. Suppose T : A ∪ B → A ∪ B is a single-valued cyclic map. For each ε > 0,
we set

PT
a
ε(A,B) = {x ∈ A ∪B : d(x, Tx) ≤ d(A,B) + ε},

of approximate best proximity of single-valued almost contraction T. We define di-
ameter PT

a
ε(A,B) by

diam(PT
a
ε(A,B)) = sup{d(x, y) : x, y ∈ PT aε(A,B)}.

Now, we obtain the following quantitative estimate of the diameter of the set
PT

a
ε(A,B) of approximate best proximity points of single-valued almost contraction.

Theorem 2.8. Let (X, d) be a metric space. If T : A∪B → A∪B is a single-valued
cyclic almost contraction with θ + L < 1, then

diam(PT
a
ε(A,B)) ≤ (2 + L)ε+ (3− θ)d(A,B)

1− (θ + L)
, ∀ε > 0.
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Proof. If x, y ∈ PT aε(A,B), then

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ d(A,B) + ε+ θd(x, y) + L.d(y, Tx) + (1− θ)d(A,B) + d(A,B) + ε

≤ 2d(A,B) + 2ε+ θd(x, y) + L.(d(x, y) + d(x, Tx)) + (1− θ)d(A,B)

≤ (3− θ)d(A,B) + (2 + L)ε+ (θ + L)d(x, y).

Therefore, d(x, y) ≤ (3−θ)d(A,B)+(2+L)ε
1−(θ+L) . Hence

diam(PT
a
ε(A,B)) ≤ (2 + L)ε+ (3− θ)d(A,B)

1− (θ + L)
.

�

The following example indicates that the above argument is not valid for set-
valued almost contraction map T .

Example 2.9. Let X = R with Euclidean metric, A = [0, 1] and B = [ 12 , 2].

Assume that T (x) = { 12 , 1}, for each x ∈ A ∪B. Then

H(T (x), T (y)) = 0 <
1

2
d(x, y)

for each x, y ∈ A∪B. Therefore, T is a continuous set-valued cyclic almost contrac-
tion with θ+L = 1

2 < 1. Moreover, x = 1
2 and x = 1 are best proximity points in A

and so diam(PT
a
ε(A,B)) = 1

2 . This shows that Theorem 2.8 is not valid whenever
T is set-valued almost contraction.

Theorem 2.10. Let (X, d) be a metric space and A and B be nonempty subsets
of X. Assume that T : A∪B( A∪B is a closed-valued cyclic almost contraction
mapping, then T has a best proximity point provided either A,B is compact and the
function f(x) = d(x, Tx) is lower semi-continuous or T is closed and compact.

Proof. By Lemma 2.5, we have infx∈X f(x) = infx∈X d(x, Tx) = d(A,B). The
lower semi-continuity of the function f(x) = d(x, Tx) and the compactness of A∪B
imply that the infimum is attained. Thus there exists an x0 ∈ A ∪ B such that
d(x0, Tx0) = d(A,B) and so T has a best proximity point. Suppose that T is closed
and compact map. According to Lemma 2.5, T has the approximate best proximity
property. Therefore for any ε > 0, there exist xε ∈ A and yε ∈ B such that

yε ∈ T (xε) ∩B(xε, d(A,B) + ε).

Now, since Y := Cl(T ) is compact, we may assume that yε converges to a
point z ∈ Y as ε → 0. Consequently, xε converges to z′ as ε → 0 such that
d(z, z′) ≤ d(A,B) + ε. On the other hand, since T is closed, then z ∈ T (z′). So
d(T (z′), z′) ≤ d(A,B) + ε. This completes the proof. �

Now, we introduce the notion of set-valued cyclic almost I-contraction. Also, we
obtain the existence of approximate best proximity point for such maps in metric
spaces.

Definition 2.11. Let I : A ∪ B → A ∪ B be a single-valued cyclic map and
T : A ∪ B ( Cl(A ∪ B) be a set-valued cyclic map. Then T is called a set-valued
cyclic almost I-contraction if there exist constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(Ix, Iy) + L.d(Iy, Tx) + (1− θ)d(A,B), ∀x ∈ A, y ∈ B.
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Definition 2.12. The mappings I and T are said to have an approximate best
proximity coincidence point property provided that

inf
x∈A∪B

d(Ix, Tx) = d(A,B)

or, equivalently, for any ε > 0, there exists z ∈ A ∪B such that

d(Iz, Tz) ≤ d(A,B) + ε.

A point (x, y) ∈ A × B is called a coincidence best proximity (common best
proximity) point of I and T if Ix ∈ Tx (d(x, Ix) = d(A,B))

Theorem 2.13. Let (X, d) be a metric space, A and B be nonempty subsets of X..
Suppose that T : A∪B( A∪B is a cyclic closed-valued map and I : A∪B → A∪B
is a single-valued cyclic map and

lim
n
d(I(xn), yn) = d(A,B)

for some xn ∈ A ∪ B and yn ∈ T (xn). Then I and T have a coincidence best
proximity point.

Proof. By a similar proof as that of Theorem 2.4, we obtain the conclusion for T
and I. �

Theorem 2.14. Every set-valued cyclic almost I-contraction in a metric space
(X, d) has the approximate best proximity coincidence point property provided that
each Tx is I-invariant. Further, if A,B is compact and the function f(x) =
d(Ix, Tx) is lower semi-continuous, then I and T have a coincidence best prox-
imity point.

Proof. Choose x0 ∈ A ∪ B and x1 ∈ T (x0). Then, by the definition of H, there
exists x2 ∈ T (x1) such that

d(I(x1), x2) ≤ H(I(x1), T (x1)) + θ.

Since each Tx is I-invariant, i.e., for each y ∈ Tx, Iy ∈ Tx, then I(x1) ∈ T (x0)
and so we have

d(I(x1), x2) ≤ H(T (x0), T (x1)) + θ.

Similarly, there exists x3 ∈ T (x2) such that

d(I(x2), x3) ≤ H(T (x1), T (x2)) + θ2.

By following the same way, there exists a sequence {xn−1} in A ∪ B ∪ T (A ∪ B)
such that xn ∈ T (xn−1) and

d(I(xn−1), xn) ≤ H(I(xn−1), T (xn−1)) + θn

≤ H(T (xn−2), T (xn−1)) + θn

≤ θd(I(xn−2), I(xn−1)) + L.d(I(xn−1), T (xn−2)) + (1− θ)d(A,B) + θn

≤ θ(H(T (xn−3), T (xn−2)) + θn−1) + (1− θ)d(A,B) + θn

≤ θ(θd(I(xn−3), I(xn−2)) + (1− θ)d(A,B) + θn−1) + (1− θ)d(A,B) + θn

= θ2d(I(xn−3), I(xn−2)) + (1− θ2)d(A,B) + 2θn

...

≤ θnd(I(x1), I(x0)) + (1− θn)d(A,B) + θn + ...+ θn.
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Then

d(I(xn−1), xn) ≤ θnd(I(x1), I(x0)) + (1− θn)d(A,B) + nθn.

Thus

lim
n
d(I(xn−1), xn) ≤ d(A,B),

for every xn ∈ T (xn−1), Also we have limn d(I(xn−1), xn)) ≥ d(A,B), so

lim
n
d(I(xn−1), xn) = d(A,B).

Therefore, by Theorem 2.13, T has approximate best proximity coincidence point
property.

Further, the lower semi-continuity of the function f(x) = d(Ix, Tx) and com-
pactness of A,B imply that the infimum is attained. Thus there exists z ∈ A ∪ B
such that f(z) = d(Iz, Tz) = d. This completes the proof. �

Remark. If I is the identity map on A ∪ B in Theorem (2.14), we obtain the
conclusion of Theorem 2.5.

Theorem 2.15. Let (X, d) be a metric space and A and B be nonempty subsets
of X. Assume that T : A ∪ B ( A ∪ B is a closed-valued map and suppose that
sequences xn ∈ X and yn ∈ Txn satisfying following two conditions:

lim
n→∞

d(xn, yn) = inf
x∈X

d(x, Tx) (2.1)

and

f(yn) ≤ θd(xn, yn) + (1− θ)d(A,B), (2.2)

where f(x) = d(x, Tx). Then T has the approximate best proximity property. Fur-
ther, T has a best proximity provided either A,B is compact and the function f(x)
is lower semi-continuous or T is closed and compact.

Proof. Let xn ∈ A∪B and yn ∈ Txn be the sequences that satisfy (2.1) and (2.2).
Then we have

inf
x∈X

f(x)− d(A,B) = inf
x∈X

d(x, Tx)− d(A,B)

≤ inf
x∈X

inf
y∈Tx

d(y, Ty)− d(A,B)

≤ inf
n∈N

inf
y∈Txn

d(y, Ty)− d(A,B)

≤ inf
n∈N

d(yn, T yn)− d(A,B)

≤ inf
n∈N

θd(xn, yn) + (1− θ)d(A,B)− d(A,B)

≤ θ( lim
n→∞

d(xn, yn)− d(A,B))

≤ θ( inf
x∈X

f(x)− d(A,B)).

Since θ < 1, we get infx∈X f(x) = infx∈X d(x, Tx) = d(A,B).
Further, the lower semi-continuity of the function f(x) = d(x, Tx) and the com-
pactness of A,B implies that the infimum is attained. Thus there exists a z0 ∈ A∪B
such that f(z0) = d(z0, T z0) = d(A,B).

The second assertion follows as in the proof of Theorem 2.10. This completes
the proof. �
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