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SOME PROPERTIES ON A CLASS OF HARMONIC UNIVALENT
FUNCTIONS DEFINED BY ¢-ANALOGUE OF RUSCHEWEYH
OPERATOR

SUHILA ELHADDAD ,HUDA ALDWEBY AND MASLINA DARUS*

ABSTRACT. A subclass of harmonic univalent functions is successfully intro-
duced in this study through utilization of g-analogue of Ruscheweyh operator.
In this paper, some results including coefficient conditions, extreme points
and growth bounds are obtained for the above mentioned harmonic univalent
functions.

1. INTRODUCTION AND PRELIMINARIES

A very crucial and important function amongst several important branches of
complex analysis is called the harmonic function. Clunie and Sheil Small [4] intro-
duced the first study of complex-values, harmonic mappings defined on a domain
D c C. This function was also studied by several researchers such as Silverman
[14], Silverman and Silvia [I5] and Jahangiri [§].

Let U = {z € C: |z| <1} be the open unit disk of the complex plane and Sy
denote the class of functions f = h 4+ g that are harmonic ,univalent and sense-
preserving in I which normalized by f(0) = f'(0) — 1 = 0 where h and g belong to
the class A of all analytic functions in I/ take the form

h(z) =z + Zakzk and g(z) = Zbkzk (0 < b1<1).
k=2 k=1

Also, we call h the analytic part and g the co-analytic part of f.
Thus for each f in Sy takes the form

f(z) :z+2akzk+zaz7. (1.1)
k=2 k=1

A necessary and sufficient condition for f to be locally univalent and sense-preserving
in U is that |h'(2)[>|¢ ()| in U (See Clunie and Sheil-Small []). Note that Sg
reduces to 5, the class of normalized analytic univalent functions if the co-analytic
part of f = h + 7 is identically zero.
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In [6], [7], for function f € A and 0<g<1 Jackson defined the g-derivative oper-
ator D, as follows:

D, = HE=TE (o 20

and Dy f(0) = f'(0) and D2 f(z) = Dy(Dyf(2)). In case f(z) = z* for k is a positive
integer, the g-derivative of f(z) is given by

k k
D=z — (29) = [k], 2"
q Z(]. _ (]) [ ]q
where [k], defined by
1—qF
klg = .
[ ]q 1 —q

Asqg—land k€N, [k], — k.
The authors in [I] defined the ¢- analogue of Ruscheweyh operator Ré‘ by

S~ E+A-1],

Rof(z) =2+ SYRIESTRIE (1.2)

=
where [k],! defined by :

[Ha={ wAk—Hq ...... [1],, Zza2w4

All the details about ¢- calculus used in this paper can be found in [3] and [5].
Also, as ¢ — 1 we have

A B R e § P A
ﬁﬁﬂ%ﬂ”_z+£§J§:uww_ug%z

Z(k+A-1!
=z+ E N gy kR
I(k —1)!
= Mk -1)!
=R (2),
where R*f(2) is Russcheweyh differential operator which was defined in [12] and

has been studied by several authors, for example [9] and [13].
Now we define the operator 72{1\ f(2) in 1' of harmonic function f = h + g given

by (LT) as
A _ DA A
Ry f(2) = Ryh(2) + Ryg(2) z €U,

where
[k + A —1],!
RO(2) = 2+ [ 2",
Pt =2 D
and
R+ —1],!
RYg(2) = [7qbkzk
005 = 2 Bl

Involving the operator R f(z) we introduce the class of harmonic univalent func-
tions as follows.
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Definition 1.1 For 0 < ¥<1 , the function f = h + g is in the class S} (X, g, ?) if
satisfy the inequality

Re{qu(R,?h(z))—ZDqUzég(z))} >9. |z =r<l. (1.3)
RYI(z) + Ryg(2)

Note that S3(0,q,9) = S () is the class of sense-preserving harmonic univalent
functions which are starlike of order ¢ in U defined by Jahangiri [§].

Let S*ﬁ()\, q,9) denote the subclass of S7; (), ¢,9) consisting of harmonic func-
tions f = h + g, where h and g are of the form

h(z)=z=Y lalz*,  g(z) =D |belar. (Ibal<1)
k=2 k=1

The main objective in this paper is to investigate number of properties for sub-
classes of harmonic functions. Particularly the coefficient bound, growth theorem
and extreme points. Recently , several subclasses of Sy have been studied by
numerous researchers see for example [2],[4], [10], [T1], and [16]

2. MAIN RESULTS

In our first theorem, we begin with a sufficient coefficient condition for func-
tions f in S} (A, ¢, 9).

Theorem 2.1. Let f = h+ g given by . If

o [ [kl =¥ kg +9 kA — 1], 149
k=2 q q

where a1 = 1,0 < ¥<1, then f is sense-preserving, harmonic, univalent in U, and

feSuAg,9).

Proof. If |z;| # |22|<q, then

‘f(21) —flz)| o 1 ‘9(21) —g(22)
h(Zl) — h(Zg) - h(Zl) — h(Zg)
- 1- Ziozl bk(zlf — Zé)
(21— 22) + Doy an(zf — 25)
R [Kglb]
7 TS Wl
SRkl + 9) (et ) /(= o))l
Z - qk I\ f !
1= SRl(ke — ) (et ) /(= 9)]laxd
> 0,
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which proves univalence. Note that f is sense-preserving in U/. This is because

8

[Dgh(z)| = Z Jqlarl|z*
- [k 4+ X —1],!
] kz 5 ()
([k]g + ) ( k+X—

>~
™)

oo |
z ; 1—9 ')'bk

1 k=1
> |Dgg(2)].

Then we have lim [|Dgh(2)] 2 [Dag(2)[] = [II(2)] = 1¢'(2)]]

We show that if (2.1]) holds for the coefficients of f = h + g, the required condition
(1.3) is satisfied. From (1.3)), we can write

e { 2Dg(Ryh(2)) = 2Dy(R}9(2)) } e { A2) } |
RyW(z) +Ryg(2)

where
Alz) = 2Dy(Ryh(2)) — 2Dy(Ryg(2))
- Z+i W —immb
and
B(2) = Ryh(z) + R)g(2) _szZkJFA kzk+iwaﬁ

[Alg! [k = 1!

k=1

Using the fact that Re(w) > ¥ if and only if |1 — ¢ + w| > |1 + ¢ — w|,it suffices to
show that

|A(z) + (1 —9)B(z)| — |A(2) — (1 +9)B(z)| > 0. (2.2)
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Substituting for A(z) and B(z) in (2.2), we get

[A(z) + (1 = 9)B(2)] = [A(2) = (1 + ) B(2)|

(2- ﬁz+z —6+1Wukzk—]§([k]q+ﬁ—l)mw
—19z+2([k]q—0—1)Wukzk—§([k]q+ﬁ+l)ww
z(z—ﬁnz—qu] et Ao i([k]qw—nmww
—ﬁz|—§2<u —9- 1) A - i([kmwl)mmnzw

2(1—19>z|{1—§2 B ol
ean

k

:2(1—19)z|{1 ”%—( e |+“j] i 'DW}
k=2

By using the enquiringly , we see that the last expression is non-negative. This
implies that f € S5 (A, ¢, 7).

Now, we obtain the necessary and sufficient condition for a function belongs to
the class S*ﬁ(/\7 q,9).

Theorem 2.2. Let f = h+ g given by . Then f € S3(A,q,9) if and only if

= [[k], — 0 kg + 9 k+X—1], 1+9
S| Bt Bt | (=t ) <1- 1ol @)

k=2

where a1 = 1,0 < ¥<1.

Proof. Since S*ﬁ()\, q,9) C 5% (X, q,9), we only need to prove the “only if ”part
of the theorem. To this end, for functions f € S*ﬁ()\,q, 9¥) , we notice that the
condition (|1.3)) is equivalent to

Re { 2Dy(Ryh()) — zDy(Ryg(2)) _ 19} > 0.
RYW(2) + RYg(2)

That is

o[ 9= SRl - 0) (Fe ) lowlt - S04k + 9) (Sifs) 1ot

[k+A—1 kA—1]
— X2 ([,\]q Th— 1]]q ') lak|2% + 3752, (W) |bx|2*
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The above condition must hold for all values of z in &/. Upon choosing the values
of z on the positive real axis where 0 < z = r<1, we must have

(1-9) = L+ 9 — (i fif (ks = Dlanl+ (Ko + Dbl )
L (b + 052y pietrllax] + [bellr—! -

(2.4)
If the condition does not hold, then the numerator in is negative for r
sufficiently close to 1. Hence there exist zp = rg in (0,1) for which the quotient of
is negative. This contradicts the required condition for f &€ S*ﬁ(/\, q,9) and
so the proof is complete .
Next, we determine the extreme points of S*ﬁ()\, q,9)

Theorem 2.3. f € S7(A,q,9) if and only if

fz) = (Xnh + Yigr) (2.5)

k=1
where

(1= )Ng!lk = gt 4.

(k= 2),

Tk A— 1
(1 =Dk —1g! .
gk(z) z+ ([k]q 19)[/6 A — 1] Zkv (k > 2)7
i(Xk +Y) =1, Xpx>0 and Y;>0.
k=1

In particular, the extreme points of S*ﬁ()\,q,ﬁ) are hy and gy,.
Proof. Note that for f of the form (2.5)),we can write

o0

fz) = ) (Xeh + Yage)
k=1
N o~ (1= 9)[Ng![k - 1],! — (1= 9)A![k—1]
= 2= ) s Y G ok )
Then
— ([k]g — D[k + A —1], — ([k]q +9)[k + A —1],! S S
> B o Y R s e = Xk Y%
= Ak —1] — Ak — 1] — —
= I_Xla
S 17
so f € S*ﬁ(/\,q,ﬂ). Conversely, suppose that f € S*—()\ q,7). Set
X, = q(kl]q_;?[)[]kJ{kAH]q lag|,0 < Xp <1,k =2,3,...
Y, = ([(k;]q t;;[)[f +[k)‘_ 1]] bk, 0 <Yy < 1,k=1,2,...
and

X = 1—2Xk —ZYk.
k=2 k=1

—k
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Then, f can be written as
o0 o0

= larlz* + Z by, |2
k=2 =

_ o~ (1 19)[][ 2 (1= )Nk — 14! o
= z—kzzz([k}q ﬁ)[kJr)\ kz Ykzk.

f(2)

= 24 (hi(z) —2) Xk + Z(gk(z) -
k=2 k=1
= th(z)Xk —+ ng(z)Yk + z <1 — ZXk — ZYk>
k=2 k=1 k=2 k=1

oo

= ) ((2) Xk + gk(2)Y%),

k=1

as required. Then the proof is completed.
The following theorem gives the growth bounds for functions f € S*ﬁ()\, q,9) which
yields a covering result for this class.

Theorem 2.4. If f € S3(A,q,0) then

1 (119 149
[

[f(2)] < A+ |b1])r+ A+1], \[2], =9 - 2]q —

|M)2,|4=T<L
and

() = (1 = [ba])r -

1 ( 1—9 1+
A+1g \2lg =9 [2lg—
Proof. The left-hand inequality was proved where as the proof for the right

hand inequality will be omitted for being similar. Let f € S*ﬁ()\, q,9). Taking the
absolute value of f, we obtain

|b1|) r2, |z| = r<1.

FEI = o= D laxl + Dl
k=2 k=1

> (1= foal)r = D (lawl + o l)r"

k=2
> (1= (bl = Y (sl + [bil)r?

k=2
o (1-9)
= (1—|b1]) (121, = 9 [A+ 1],
. [Z T ) ]

k=2
(1-9) L+y ’

> (I=|b])r— (2]g =) [A+1]q (1 - Hbl) '

1 19  1+40 )
“‘b”r‘u+uq<mqﬂ‘mhﬂW0T'
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