SOME PROPERTIES ON A CLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY q-ANALOGUE OF RUSCHEWEYH OPERATOR

SUHILA ELHADDAD ,HUDA ALDWEBY AND MASLINA DARUS*

Abstract

A subclass of harmonic univalent functions is successfully introduced in this study through utilization of q-analogue of Ruscheweyh operator. In this paper, some results including coefficient conditions, extreme points and growth bounds are obtained for the above mentioned harmonic univalent functions.

1. Introduction and preliminaries

A very crucial and important function amongst several important branches of complex analysis is called the harmonic function. Clunie and Sheil Small 4] introduced the first study of complex-values, harmonic mappings defined on a domain $D \subset \mathbb{C}$. This function was also studied by several researchers such as Silverman [14], Silverman and Silvia [15] and Jahangiri [8].

Let $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk of the complex plane and \mathcal{S}_{H} denote the class of functions $f=h+\bar{g}$ that are harmonic , univalent and sensepreserving in \mathcal{U} which normalized by $f(0)=f^{\prime}(0)-1=0$ where h and g belong to the class \mathcal{A} of all analytic functions in \mathcal{U} take the form

$$
h(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=\sum_{k=1}^{\infty} b_{k} z^{k} \quad\left(0 \leq b_{1}<1\right)
$$

Also, we call h the analytic part and g the co-analytic part of f.
Thus for each f in \mathcal{S}_{H} takes the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}+\sum_{k=1}^{\infty} \overline{b_{k}} \overline{z^{k}} \tag{1.1}
\end{equation*}
$$

A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathcal{U} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathcal{U} (See Clunie and Sheil-Small [4). Note that \mathcal{S}_{H} reduces to S, the class of normalized analytic univalent functions if the co-analytic part of $f=h+\bar{g}$ is identically zero.

[^0]In [6], 7], for function $f \in \mathcal{A}$ and $0<q<1$ Jackson defined the q-derivative operator D_{q} as follows:

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}, \quad(z \neq 0)
$$

and $D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. In case $f(z)=z^{k}$ for k is a positive integer, the q-derivative of $f(z)$ is given by

$$
D_{q} z^{k}=\frac{z^{k}-(z q)^{k}}{z(1-q)}=[k]_{q} z^{k-1}
$$

where $[k]_{q}$ defined by

$$
[k]_{q}=\frac{1-q^{k}}{1-q} .
$$

As $q \rightarrow 1$ and $k \in \mathbb{N},[k]_{q} \rightarrow k$.
The authors in 1 defined the q - analogue of Ruscheweyh operator $\mathcal{R}_{q}^{\lambda}$ by

$$
\begin{equation*}
\mathcal{R}_{q}^{\lambda} f(z)=z+\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

where $[k]_{q}$! defined by :

$$
[k]_{q}!= \begin{cases}{[k]_{q}[k-1]_{q} \ldots \ldots .[1]_{q},} & k=1,2, \ldots \\ 1 ; & k=0\end{cases}
$$

All the details about q - calculus used in this paper can be found in [3] and [5].
Also, as $q \longrightarrow 1$ we have

$$
\begin{aligned}
\lim _{q \longrightarrow 1} \mathcal{R}_{q}^{\lambda} f(z) & =z+\lim _{q \longrightarrow 1}\left[\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}\right] \\
& =z+\sum_{k=2}^{\infty} \frac{(k+\lambda-1)!}{(\lambda)!(k-1)!} a_{k} z^{k} \\
& =\mathcal{R}^{\lambda} f(z),
\end{aligned}
$$

where $\mathcal{R}^{\lambda} f(z)$ is Russcheweyh differential operator which was defined in [12] and has been studied by several authors, for example [9] and [13].
Now we define the operator $\mathcal{R}_{q}^{\lambda} f(z)$ in 1.2 of harmonic function $f=h+\bar{g}$ given by (1.1) as

$$
\mathcal{R}_{q}^{\lambda} f(z)=\mathcal{R}_{q}^{\lambda} h(z)+\overline{\mathcal{R}_{q}^{\lambda} g(z)} \quad z \in \mathcal{U}
$$

where

$$
\mathcal{R}_{q}^{\lambda} h(z)=z+\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}
$$

and

$$
\mathcal{R}_{q}^{\lambda} g(z)=\sum_{k=1}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} b_{k} z^{k} .
$$

Involving the operator $\mathcal{R}_{q}^{\lambda} f(z)$ we introduce the class of harmonic univalent functions as follows.

Definition 1.1 For $0 \leq \vartheta<1$, the function $f=h+\bar{g}$ is in the class $S_{H}^{*}(\lambda, q, \vartheta)$ if satisfy the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z D_{q}\left(\mathcal{R}_{q}^{\lambda} h(z)\right)-\overline{z D_{q}\left(\mathcal{R}_{q}^{\lambda} g(z)\right)}}{\mathcal{R}_{q}^{\lambda} h(z)+\overline{\mathcal{R}_{q}^{\lambda} g(z)}}\right\} \geq \vartheta . \quad|z|=r<1 . \tag{1.3}
\end{equation*}
$$

Note that $S_{H}^{*}(0, q, \vartheta)=S_{H}(\vartheta)$ is the class of sense-preserving harmonic univalent functions which are starlike of order ϑ in \mathcal{U} defined by Jahangiri 8.

Let $S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ denote the subclass of $S_{H}^{*}(\lambda, q, \vartheta)$ consisting of harmonic functions $f=h+\bar{g}$, where h and g are of the form

$$
h(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}, \quad g(z)=\sum_{k=1}^{\infty}\left|b_{k}\right| z_{k} . \quad\left(\left|b_{1}\right|<1\right)
$$

The main objective in this paper is to investigate number of properties for subclasses of harmonic functions. Particularly the coefficient bound, growth theorem and extreme points. Recently, several subclasses of S_{H} have been studied by numerous researchers see for example [2], [4], [10], 11], and [16]

2. Main Results

In our first theorem, we begin with a sufficient coefficient condition for functions f in $S_{H}^{*}(\lambda, q, \vartheta)$.

Theorem 2.1. Let $f=h+\bar{g}$ given by (1.1). If

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\frac{[k]_{q}-\vartheta}{1-\vartheta}\left|a_{k}\right|+\frac{[k]_{q}+\vartheta}{1-\vartheta}\left|b_{k}\right|\right]\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right) \leq 1-\frac{1+\vartheta}{1-\vartheta}\left|b_{1}\right| \tag{2.1}
\end{equation*}
$$

where $a_{1}=1,0 \leq \vartheta<1$, then f is sense-preserving, harmonic, univalent in \mathcal{U}, and $f \in S_{H}^{*}(\lambda, q, \vartheta)$.

Proof. If $\left|z_{1}\right| \neq\left|z_{2}\right|<q$, then

$$
\begin{aligned}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| & \geq 1-\left|\frac{g\left(z_{1}\right)-g\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
& =1-\left|\frac{\sum_{k=1}^{\infty} b_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}{\left(z_{1}-z_{2}\right)+\sum_{k=2}^{\infty} a_{k}\left(z_{1}^{k}-z_{2}^{k}\right)}\right| \\
& >1-\frac{\sum_{k=1}^{\infty}[k]_{q}\left|b_{k}\right|}{1-\sum_{k=2}^{\infty}[k]_{q}\left|a_{k}\right|} \\
& \geq 1-\frac{\sum_{k=1}^{\infty}\left[\left([k]_{q}+\vartheta\right)\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right) /(1-\vartheta)\right]\left|b_{k}\right|}{1-\sum_{k=2}^{\infty}\left[\left([k]_{q}-\vartheta\right)\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right) /(1-\vartheta)\right]\left|a_{k}\right|} \\
& \geq 0,
\end{aligned}
$$

which proves univalence. Note that f is sense-preserving in \mathcal{U}. This is because

$$
\begin{aligned}
\left|D_{q} h(z)\right| & \geq 1-\sum_{k=2}^{\infty}[k]_{q}\left|a_{k}\right||z|^{k-1} \\
& >1-\sum_{k=2}^{\infty} \frac{\left([k]_{q}-\vartheta\right)}{1-\vartheta}\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|a_{k}\right| \\
& \geq \sum_{k=1}^{\infty} \frac{\left([k]_{q}+\vartheta\right)}{1-\vartheta}\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|b_{k}\right| \\
& >\sum_{k=1}^{\infty} \frac{\left([k]_{q}+\vartheta\right)}{1-\vartheta}\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|b_{k}\right||z|^{k-1} \geq \sum_{k=1}^{\infty}[k]_{q}\left|b_{k}\right||z|^{k-1} \\
& \geq\left|D_{q} g(z)\right| .
\end{aligned}
$$

Then we have $\lim _{q \rightarrow 1}\left[\left|D_{q} h(z)\right| \geq\left|D_{q} g(z)\right|\right]=\left[\left|h^{\prime}(z)\right| \geq\left|g^{\prime}(z)\right|\right]$.
We show that if (2.1) holds for the coefficients of $f=h+\bar{g}$, the required condition (1.3) is satisfied. From (1.3), we can write

$$
\operatorname{Re}\left\{\frac{z D_{q}\left(\mathcal{R}_{q}^{\lambda} h(z)\right)-\overline{z D_{q}\left(\mathcal{R}_{q}^{\lambda} g(z)\right)}}{\mathcal{R}_{q}^{\lambda} h(z)+\overline{\mathcal{R}_{q}^{\lambda} g(z)}}\right\}=\operatorname{Re}\left\{\frac{A(z)}{B(z)}\right\}
$$

where

$$
\begin{aligned}
A(z) & =z D_{q}\left(\mathcal{R}_{q}^{\lambda} h(z)\right)-\overline{z D_{q}\left(\mathcal{R}_{q}^{\lambda} g(z)\right)} \\
& =z+\sum_{k=2}^{\infty}[k]_{q} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}-\sum_{k=1}^{\infty}[k]_{q} \overline{[k+\lambda-1]_{q}!} \overline{[\lambda]_{q}![k-1]_{q}!} \overline{b_{k}} \overline{z^{k}}
\end{aligned}
$$

and
$B(z)=\mathcal{R}_{q}^{\lambda} h(z)+\overline{\mathcal{R}_{q}^{\lambda} g(z)}=z+\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}+\sum_{k=1}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} \overline{b_{k}} \overline{z^{k}}$.

Using the fact that $\operatorname{Re}(w) \geq \vartheta$ if and only if $|1-\vartheta+w| \geq|1+\vartheta-w|$, it suffices to show that

$$
\begin{equation*}
|A(z)+(1-\vartheta) B(z)|-|A(z)-(1+\vartheta) B(z)| \geq 0 . \tag{2.2}
\end{equation*}
$$

Substituting for $A(z)$ and $B(z)$ in (2.2), we get

$$
\begin{aligned}
&|A(z)+(1-\vartheta) B(z)|-|A(z)-(1+\vartheta) B(z)| \\
&=\left|(2-\vartheta) z+\sum_{k=2}^{\infty}\left([k]_{q}-\vartheta+1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}-\sum_{k=1}^{\infty}\left([k]_{q}+\vartheta-1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} \overline{b_{k} z^{k}}\right| \\
&-\left|-\vartheta z+\sum_{k=2}^{\infty}\left([k]_{q}-\vartheta-1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} a_{k} z^{k}-\sum_{k=1}^{\infty}\left([k]_{q}+\vartheta+1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!} \overline{b_{k} z^{k}}\right| \\
& \geq(2-\vartheta)|z|-\sum_{k=2}^{\infty}\left([k]_{q}-\vartheta+1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|a_{k}\right||z|^{k}-\sum_{k=1}^{\infty}\left([k]_{q}+\vartheta-1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|b_{k}\right||z|^{k} \\
&-\vartheta|z|-\sum_{k=2}^{\infty}\left([k]_{q}-\vartheta-1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|a_{k}\right||z|^{k}-\sum_{k=1}^{\infty}\left([k]_{q}+\vartheta+1\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|b_{k}\right||z|^{k} \\
& \geq 2(1-\vartheta)|z|\left\{1-\sum_{k=2}^{\infty} \frac{\left([k]_{q}-\vartheta\right)}{1-\vartheta} \cdot \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|a_{k}\right||z|^{k-1}\right. \\
&= 2(1-\vartheta)|z|\left\{1-\frac{1+\vartheta}{1-\vartheta}\left|b_{1}\right|-\left(\sum_{k=2}^{\infty} \frac{\left([k]_{q}+\vartheta\right)}{1-\vartheta} \cdot \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left|b_{k}\right||z|^{k-1}\right\}\right. \\
&= {[k]_{q}-\vartheta } \\
& 1-\vartheta\left.\left.\left.\left|a_{k}\right|+\frac{[k]_{q}+\vartheta}{1-\vartheta}\left|b_{k}\right|\right]\right) \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right\} .
\end{aligned}
$$

By using the enquiringly 2.1), we see that the last expression is non-negative. This implies that $f \in S_{H}^{*}(\lambda, q, \vartheta)$.

Now, we obtain the necessary and sufficient condition for a function belongs to the class $S_{\bar{H}}^{*}(\lambda, q, \vartheta)$.

Theorem 2.2. Let $f=h+\bar{g}$ given by 1.1). Then $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\frac{[k]_{q}-\vartheta}{1-\vartheta}\left|a_{k}\right|+\frac{[k]_{q}+\vartheta}{1-\vartheta}\left|b_{k}\right|\right]\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right) \leq 1-\frac{1+\vartheta}{1-\vartheta}\left|b_{1}\right| \tag{2.3}
\end{equation*}
$$

where $a_{1}=1,0 \leq \vartheta<1$.
Proof. Since $S_{\frac{*}{H}}^{*}(\lambda, q, \vartheta) \subseteq S_{H}^{*}(\lambda, q, \vartheta)$, we only need to prove the "only if "part of the theorem. To this end, for functions $f \in S_{\frac{*}{H}}^{*}(\lambda, q, \vartheta)$, we notice that the condition 1.3 is equivalent to

$$
\operatorname{Re}\left\{\frac{z D_{q}\left(\mathcal{R}_{q}^{\lambda} h(z)\right)-\overline{z D_{q}\left(\mathcal{R}_{q}^{\lambda} g(z)\right)}}{\mathcal{R}_{q}^{\lambda} h(z)+\overline{\mathcal{R}_{q}^{\lambda} g(z)}}-\vartheta\right\} \geq 0 .
$$

That is
$\operatorname{Re}\left[\frac{(1-\vartheta) z-\sum_{k=2}^{\infty}\left([k]_{q}-\vartheta\right)\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|a_{k}\right| z^{k}-\sum_{k=1}^{\infty}\left([k]_{q}+\vartheta\right)\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|b_{k}\right| \bar{z}^{k}}{z-\sum_{k=2}^{\infty}\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|a_{k}\right| z^{k}+\sum_{k=1}^{\infty}\left(\frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\right)\left|b_{k}\right| \bar{z}^{k}}\right] \geq 0$.

The above condition must hold for all values of z in \mathcal{U}. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{equation*}
\frac{(1-\vartheta)-(1+\vartheta) b_{1}-\left(\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left[\left([k]_{q}-\vartheta\right)\left|a_{k}\right|+\left([k]_{q}+\vartheta\right)\left|b_{k}\right|\right] r^{k-1}\right)}{1+\left|b_{1}\right|+\sum_{k=2}^{\infty} \frac{[k+\lambda-1]_{q}!}{[\lambda]_{q}![k-1]_{q}!}\left[\left|a_{k}\right|+\left|b_{k}\right|\right] r^{k-1}} \geq 0 \tag{2.4}
\end{equation*}
$$

If the condition 2.3 does not hold, then the numerator in 2.4 is negative for r sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient of (2.4) is negative. This contradicts the required condition for $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ and so the proof is complete .

Next, we determine the extreme points of $S_{\bar{H}}^{*}(\lambda, q, \vartheta)$
Theorem 2.3. $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty}\left(X_{k} h_{k}+Y_{k} g_{k}\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{1}(z)=z, h_{k}(z)=z-\frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!} z^{k} ; \quad(k \geq 2), \\
g_{k}(z)=z+\frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!} \bar{z}^{k} ; \quad(k \geq 2), \\
\sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right)=1, \quad X_{k} \geq 0 \quad \text { and } \quad Y_{k} \geq 0
\end{gathered}
$$

In particular, the extreme points of $S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ are h_{k} and g_{k}.
Proof. Note that for f of the form 2.5 , we can write

$$
\begin{aligned}
f(z) & =\sum_{k=1}^{\infty}\left(X_{k} h_{k}+Y_{k} g_{k}\right) \\
& =\sum_{k=1}^{\infty}\left(X_{k}+Y_{k}\right) z-\sum_{k=2}^{\infty} \frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!} X_{k} z^{k}+\sum_{k=1}^{\infty} \frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}+\vartheta\right)[k+\lambda-1]_{q}!} Y_{k} \bar{z}^{k}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{k=2}^{\infty} \frac{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!}{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}\left|a_{k}\right|+\sum_{k=1}^{\infty} \frac{\left([k]_{q}+\vartheta\right)[k+\lambda-1]_{q}!}{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}\left|b_{k}\right| & =\sum_{k=2}^{\infty} X_{k}+\sum_{k=1}^{\infty} Y_{k} \\
& =1-X_{1} \\
& \leq 1
\end{aligned}
$$

so $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$. Conversely, suppose that $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$. Set

$$
\begin{gathered}
X_{k}=\frac{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!}{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}\left|a_{k}\right|, 0 \leq X_{k} \leq 1, k=2,3, \ldots \\
Y_{k}=\frac{\left([k]_{q}+\vartheta\right)[k+\lambda-1]_{q}!}{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}\left|b_{k}\right|, 0 \leq Y_{k} \leq 1, k=1,2, \ldots
\end{gathered}
$$

and

$$
X_{1}=1-\sum_{k=2}^{\infty} X_{k}-\sum_{k=1}^{\infty} Y_{k}
$$

Then, f can be written as

$$
\begin{aligned}
f(z) & =z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}+\sum_{k=1}^{\infty}\left|b_{k}\right| \bar{z}^{k} \\
& =z-\sum_{k=2}^{\infty} \frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}-\vartheta\right)[k+\lambda-1]_{q}!} X_{k} z^{k}+\sum_{k=1}^{\infty} \frac{(1-\vartheta)[\lambda]_{q}![k-1]_{q}!}{\left([k]_{q}+\vartheta\right)[k+\lambda-1]_{q}!} Y_{k} \bar{z}^{k} . \\
& =z+\sum_{k=2}^{\infty}\left(h_{k}(z)-z\right) X_{k}+\sum_{k=1}^{\infty}\left(g_{k}(z)-z\right) Y_{k} \\
& =\sum_{k=2}^{\infty} h_{k}(z) X_{k}+\sum_{k=1}^{\infty} g_{k}(z) Y_{k}+z\left(1-\sum_{k=2}^{\infty} X_{k}-\sum_{k=1}^{\infty} Y_{k}\right) \\
& =\sum_{k=1}^{\infty}\left(h_{k}(z) X_{k}+g_{k}(z) Y_{k}\right),
\end{aligned}
$$

as required. Then the proof is completed.
The following theorem gives the growth bounds for functions $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$ which yields a covering result for this class.
Theorem 2.4. If $f \in S_{\frac{*}{H}}(\lambda, q, \vartheta)$ then

$$
|f(z)| \leq\left(1+\left|b_{1}\right|\right) r+\frac{1}{[\lambda+1]_{q}}\left(\frac{1-\vartheta}{[2]_{q}-\vartheta}-\frac{1+\vartheta}{[2]_{q}-\vartheta}\left|b_{1}\right|\right) r^{2}, \quad|z|=r<1
$$

and

$$
|f(z)| \geq\left(1-\left|b_{1}\right|\right) r-\frac{1}{[\lambda+1]_{q}}\left(\frac{1-\vartheta}{[2]_{q}-\vartheta}-\frac{1+\vartheta}{[2]_{q}-\vartheta}\left|b_{1}\right|\right) r^{2}, \quad|z|=r<1
$$

Proof. The left-hand inequality was proved where as the proof for the right hand inequality will be omitted for being similar. Let $f \in S_{\bar{H}}^{*}(\lambda, q, \vartheta)$. Taking the absolute value of f, we obtain

$$
\begin{aligned}
|f(z)| & =\left|z-\sum_{k=2}^{\infty}\right| a_{k}\left|z^{k}+\sum_{k=1}^{\infty}\right| b_{k}\left|\bar{z}^{k}\right| \\
& \geq\left(1-\left|b_{1}\right|\right) r-\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \\
& \geq\left(1-\left|b_{1}\right|\right) r-\sum_{k=2}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{2} \\
& =\left(1-\left|b_{1}\right|\right) r-\frac{(1-\vartheta)}{\left([2]_{q}-\vartheta\right)[\lambda+1]_{q}} \\
& \times\left[\sum_{k=2}^{\infty}\left(\frac{\left([2]_{q}-\vartheta\right)[\lambda+1]_{q}}{1-\vartheta}\left|a_{k}\right|+\frac{\left([2]_{q}-\vartheta\right)[\lambda+1]_{q}}{1-\vartheta}\left|b_{k}\right|\right) r^{2}\right] \\
& \geq\left(1-\left|b_{1}\right|\right) r-\frac{(1-\vartheta)}{\left([2]_{q}-\vartheta\right)[\lambda+1]_{q}}\left(1-\frac{1+\vartheta}{1-\vartheta}\left|b_{1}\right|\right) r^{2} \\
& =\left(1-\left|b_{1}\right|\right) r-\frac{1}{[\lambda+1]_{q}}\left(\frac{1-\vartheta}{[2]_{q}-\vartheta}-\frac{1+\vartheta}{[2]_{q}-\vartheta}\left|b_{1}\right|\right) r^{2} .
\end{aligned}
$$

Acknowledgments. The work here is supported by UKM grant: GUP-2017-064.

References

[1] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstract and Applied Analysis, 2014(2014), Article ID 958563, 6 pages.
[2] H. Aldweby and M. Darus , A subclass of harmonic univalent functions associated with q Analogue of Dziok-Srivatava Operator, ISRN Mathematical Analysis.Volume 2013, Article ID 382312, 6 pages.
[3] A. Aral, V. Gupta, and R. P.Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, NY, USA, 2013.
[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Seriers A I Math., 9(1984), 3-25.
[5] H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1983.
[6] F. H. Jackson, On q - functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46(1908), 253-281.
[7] F. H. Jackson, On q - definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41(1910),193-203.
[8] J.M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999) 470-477.
[9] M. L. Mogra, Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, International Journal of Mathematics and Mathematical Sciences, 22 (4)(1999), 795-805.
[10] A. Oshah and M. Darus, A subclass of harmonic univalent functions associated with generalized fractional differential operator, Bulletin Calcutta Mathematical Society,107(2015), 205-218.
[11] S. Porwal and M.K. Aouf, On a new subclass of harmonic univalent functions defined by fractional calculus operator, Journal of Fractional Calculus and Applications, 4(10) (2013), 1-12.
[12] S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society, 49(1975), 109-115.
[13] S. L. Shukla and V. Kumar, Univalent functions defined by Ruscheweyh derivatives, International Journal of Mathematics and Mathematical Sciences, 6 (3)(1983), 483-486.
[14] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal., 220(1) (1998), 283-289.
[15] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28 (1999): 275-284.
[16] B. A. Stephen, P. Nirmaladevi, T.V. Sudharsan and K.G. Subramanian, A class of harmonic multivalent functions and a coefficient inequality, Far East J. Math. Sci., 32(2009),55-68.

Suhila Elhaddad
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

E-mail address: suhila.e@yahoo.com
Huda Aldweby
Department of Mathematics, Faculty of Science, AL Asmaraya Islamic University, Libya
E-mail address: hu.aldweby@gmail.com
Maslina Darus
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

E-mail address: maslina@ukm.edu.my

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Harmonic univalent functions, q - analogue of Ruscheweyh operator, Growth bounds.
 (C) 2018 Ilirias Research Institute, Prishtinë, Kosovë.

 Submitted April 2, 2018. Published June 21, 2018.
 Communicated by H. E. Darwish .
 *-corresponding author.

