THE IDEAL OF χ^2 OF FUZZY REAL NUMBERS OVER FUZZY p–METRIC SPACES DEFINED BY MUSIELAK

N. SUBRAMANIAN¹, N. SAIVARAJU ², AND C.PRIYA ³

Abstract. In this article we introduce the sequence spaces $[\chi^2_F, \|(d(x_1,0), d(x_2,0), \ldots, d(x_n,0))\|_p]$ and $[\Lambda^2_F, \|(d(x_1,0), d(x_2,0), \ldots, d(x_n,0))\|_p]$, and study some basic topological and algebraic properties of these spaces. Also we investigate the relations related to these spaces and some of their properties like solidity, symmetricity, convergence free etc., and also investigate some inclusion relations related to these spaces.

1. Introduction

Throughout w, Γ and Λ denote the classes of all, entire and analytic scalar valued single sequences, respectively. We write w^2 for the set of all complex sequences (x_{mn}), where $m,n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on, they were investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy [6], Turkmenoglu [7], and many others.

We procure the following sets of double sequences:

$M_u (t) := \{ (x_{mn}) \in w^2 : sup_{m,n\in\mathbb{N}} |x_{mn}|t_{mn} < \infty \},$

$C_p(t) := \{ (x_{mn}) \in w^2 : p - lim_{m,n\to\infty} |x_{mn} - l|t_{mn} = 1 \ for \ some \ l \in \mathbb{C} \},$

$C_{op}(t) := \{ (x_{mn}) \in w^2 : p - lim_{m,n\to\infty} |x_{mn}|t_{mn} = 1 \},$

$L_u(t) := \{ (x_{mn}) \in w^2 : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|t_{mn} < \infty \},$

$C_{bp}(t) := C_p(t) \cap M_u(t)$ and $C_{opb}(t) = C_{op}(t) \cap M_u(t);$ where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m,n \in \mathbb{N}$ and $p - lim_{m,n\to\infty}$ denotes the limit in the Pringsheim’s sense. In the case $t_{mn} = 1$ for all $m,n \in \mathbb{N}$, $M_u(t), C_p(t), C_{op}(t), L_u(t), C_{bp}(t)$ and $C_{opb}(t)$ reduce to the sets...
\(\mathcal{M}_u, \mathcal{C}_p, \mathcal{L}_u, \mathcal{C}_p \) and \(\mathcal{C}_bp \), respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak \[8,9\] have proved that \(\mathcal{M}_u (t) \) and \(\mathcal{C}_p (t), \mathcal{C}_bp (t) \) are complete paranormed spaces of double sequences and gave the \(\alpha-, \beta-, \gamma- \) duals of the spaces \(\mathcal{M}_u (t) \) and \(\mathcal{C}_bp (t) \).

Quite recently, in her PhD thesis, Zelter \[10\] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely \[11\] and Tripathy have independently introduced the space \(L^p \) properties of the space \(\ell^q \).

BS Altay and Basar \[12\] have defined the spaces \(BS, BS (t), CS_p, CS_{bp}, CS_r \) and \(BV \) of double sequences consisting of all double series whose sequence of partial sums are in the spaces \(\mathcal{M}_u, \mathcal{M}_u (t), \mathcal{C}_p, \mathcal{C}_bp, \mathcal{C}_r \) and \(\mathcal{L}_u \), respectively, and also examined some properties of those sequence spaces and determined the \(\alpha- \) duals of the spaces \(BS, BV, CS_{bp} \) and the \(\beta (\vartheta) - \) duals of the spaces \(CS_{bp} \) and \(CS_r \) of double series.

Basar and Sever \[13\] have introduced the Banach space \(L_q \) of double sequences corresponding to the well-known space \(\ell_q \) of single sequences and examined some properties of the space \(L_q \). Quite recently Subramanian and Misra \[14\] have studied the space \(\chi^2_M \) of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox \[15\] as an extension of the definition of strongly Cesàro summable sequences. Connor \[16\] further extended this definition to a definition of strong \(A- \) summability with respect to a modulus where \(A = (a_{n,k}) \) is a nonnegative regular matrix and established some connections between strong \(A- \) summability, strong \(A- \) summability with respect to a modulus, and \(A- \) statistical convergence. In \[17\] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in \[18\]-\[19\], and \[20\] the four dimensional matrix transformation \((Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k,\ell}^{mn} x_{mn}\) was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For \(a, b \geq 0 \) and \(0 < p < 1 \), we have

\[
(a + b)^p \leq a^p + b^p
\]

(1.1)

The double series \(\sum_{m,n=1}^{\infty} x_{mn} \) is called convergent if and only if the double sequence \((s_{mn})\) is convergent, where \(s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N}) \).

A sequence \(x = (x_{mn}) \) is said to be double analytic if \(\sup_{m,n} |x_{mn}|^{1/m+n} < \infty \). The vector space of all double analytic sequences will be denoted by \(\Lambda^2 \). A sequence \(x = (x_{mn}) \) is called double gai sequence if \((m+n)! |x_{mn}|^{1/(m+n)} \to 0 \) as \(m, n \to \infty \). The double gai sequences will be denoted by \(\chi^2 \). Let \(\phi = \{ \text{finite sequences} \} \).

Consider a double sequence \(x = (x_{ij}) \). The \((m,n)\)th section \(x^{[m,n]} \) of the sequence is defined by \(x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \) for all \(m, n \in \mathbb{N} \); where \(\exists_{ij} \) denotes the double sequence whose only non zero term is \(\frac{1}{(i+j)} \) in the \((i,j)\)th place for each \(i, j \in \mathbb{N} \).

An FK-space(or a metric space) \(X \) is said to have AK property if \((\exists_{mn})\) is a Schauder basis for \(X \). Or equivalently \(x^{[m,n]} \to x \).
An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings \(x = (x_k) \to (x_{mn}) (m,n \in \mathbb{N}) \) are also continuous.

Let \(M \) and \(\Phi \) are mutually complementary modulus functions. Then, we have:

(i) For all \(u,y \geq 0 \),
\[
uy \leq M(u) + \Phi(y), \text{(Young's inequality)[See[21]]} \tag{1.2}
\]

(ii) For all \(u \geq 0 \),
\[
u \eta(u) = M(u) + \Phi(\eta(u)). \tag{1.3}
\]

(iii) For all \(u \geq 0 \), and \(0 < \lambda < 1 \),
\[
M(\lambda u) \leq \lambda M(u) \tag{1.4}
\]

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct Orlicz sequence space
\[
\ell_M = \{ x \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \},
\]
The space \(\ell_M \) with the norm
\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\},
\]
becomes a Banach space which is called an Orlicz sequence space. For \(M(t) = t^p \) \((1 \leq p < \infty)\), the spaces \(\ell_M \) coincide with the classical sequence space \(\ell_p \).

A sequence \(f = (f_{mn}) \) of modulus function is called a Musielak-modulus function. A sequence \(g = (g_{mn}) \) defined by
\[
g_{mn}(v) = \sup \left\{ |v| u - (f_{mn})(u) : u \geq 0 \right\}, m,n = 1,2, \cdots
\]
is called the complementary function of a Musielak-modulus function \(f \). For a given Musielak modulus function \(f \), the Musielak-modulus sequence space \(t_f \) is defined as follows
\[
t_f = \left\{ x \in w^2 : M_f \left(|x_{mn}| \right)^{1/m+n} \to 0 \text{ as } m,n \to \infty \right\},
\]
where \(M_f \) is a convex modular defined by
\[
M_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(|x_{mn}| \right)^{1/m+n}, x = (x_{mn}) \in t_f.
\]

We consider \(t_f \) equipped with the Luxemburg metric
\[
d(x,y) = \sup_{mn} \left\{ \inf \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(\frac{|x_{mn}|^{1/m+n}}{m+n} \right) \right) \leq 1 \right\}
\]
If \(X \) is a sequence space, we give the following definitions:

(i) \(X' = \) the continuous dual of \(X \);

(ii) \(X^a = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \right\} ;

(iii) \(X^\varphi = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn}x_{mn} \text{ is convergent, for each } x \in X \right\} ;

(iv) \(X^\gamma = \left\{ a = (a_{mn}) : \sup_{m,n \geq 1} \left| \sum_{m,n=1}^{M,N} a_{mn}x_{mn} \right| < \infty, \text{ for each } x \in X \right\} ;

(v) let \(X \) be an FK-space \(\supset \phi \); then \(X^f = \left\{ f(\mathfrak{X}_{mn}) : f \in X' \right\} ;

(vi) \(X^\delta = \left\{ a = (a_{mn}) : \sup_{m,n} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\} ;

$X^\alpha, X^\beta, X^\gamma$ are called α - (or Köthe – Toeplitz) dual of X, β – (or generalized – Köthe – Toeplitz) dual of X, γ – dual of X, δ – dual of X respectively. X^α is defined by Gupta and Kamptan. It is clear that $X^\alpha \subset X^\beta$ and $X^\alpha \subset X^\gamma$, but $X^\beta \subset X^\gamma$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_∞, where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here c, c_0 and ℓ_∞ denote the classes of convergent, null and bounded scalar valued single sequences respectively. The difference sequence space bv_δ of the classical space ℓ_δ is introduced and studied in the case $1 \leq \delta \leq \infty$ by Başar and Altay and the case $0 < \delta < 1$ by Altay and Başar. The spaces $c(\Delta), c_0(\Delta), \ell_\infty(\Delta)$ and bv_δ are Banach spaces normed by

$$\|x\| = |x_1| + sup_{k \geq 1} |\Delta x_k|$$

and $\|x\|_{bv_\delta} = (\sum_{k=1}^{\infty} |x_k|^{\delta})^{1/\delta}, (1 \leq \delta < \infty)$.

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\}$$

where $Z = A^2, X^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$.

2. Definition and Preliminaries

Let $n \in \mathbb{N}$ and X be a real vector space of dimension n, where $n \leq m$. A real valued function $d_p(x_1, \ldots, x_n) = \| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p$ on X satisfying the following four conditions:

(i) $\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p = 0$ if and only if $d_1(x_1, 0), \ldots, d_n(x_n, 0)$ are linearly dependent,

(ii) $\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p$ is invariant under permutation,

(iii) $\| (\alpha d_1(x_1, 0), \ldots, \alpha d_n(x_n, 0)) \|_p = |\alpha| \| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p, \alpha \in \mathbb{R}$

(iv) $\| (d_1(x_1, y_1), d_2(x_2, y_2), \ldots, d_n(x_n, y_n)) \|_p = (d_1(x_1, x_2, \ldots, x_n)^p + d_2(y_1, y_2, \ldots, y_n)^p)^{1/p}$ for $1 \leq p < \infty$; (or)

(v) $d((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) = sup \{d_X(x_1, x_2, \ldots, x_n), d_Y(y_1, y_2, \ldots, y_n)\}$,

for $x_1, x_2, \ldots, x_n \in X, y_1, y_2, \ldots, y_n \in Y$ is called the p metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the p norm:

$$\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_E = sup \{|det(d_{mn}(x_{mn}, 0))|\}$$

$$= sup\left(\begin{array}{cccc}
 d_{11} & d_{11} & \ldots \ & d_{1n} \\
 d_{12} & d_{12} & \ldots \ & d_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{1n} & d_{21} & \ldots \ & d_{nn}
\end{array}\right)$$

$$\begin{array}{cccc}
 (x_{11}, 0) & (x_{12}, 0) & \ldots \ & (x_{1n}, 0) \\
 (x_{21}, 0) & (x_{22}, 0) & \ldots \ & (x_{2n}, 0) \\
 \vdots & \vdots & \ddots & \vdots \\
 (x_{n1}, 0) & (x_{n2}, 0) & \ldots \ & (x_{nn}, 0)
\end{array}$$
where \(x_i = (x_{i1}, \ldots, x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \ldots, n \).

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(p \)-metric. Any complete \(p \)-metric space is said to be \(p \)-Banach metric space.

The notion of ideal convergence was introduced first by Kostyrko et al. [24] as a generalization of statistical convergence which was further studied in topological spaces by Kumar et al. [25, 26] and also more applications of ideals can be deals with various authors by B.Hazarika [27-39] and B.C.Tripathy and B. Hazarika [40-43].

2.1. Definition. A family \(I \subset 2^Y \) of subsets of a non empty set \(Y \) is said to be an ideal in \(Y \) if

1. \(\phi \in I \)
2. \(A, B \in I \) imply \(A \cup B \in I \)
3. \(A \in I, B \subset A \) imply \(B \in I \).

while an admissible ideal \(I \) of \(Y \) further satisfies \(\{x\} \in I \) for each \(x \in Y \). Given \(I \subset 2^{\mathbb{N} \times \mathbb{N}} \) be a non trivial ideal in \(\mathbb{N} \times \mathbb{N} \). A sequence \((x_{mn})_{m,n \in \mathbb{N} \times \mathbb{N}} \) in \(X \) is said to be \(I \)-convergent to 0 \(\in X \), if for each \(\epsilon > 0 \) the set
\[
A(\epsilon) = \{ m, n \in \mathbb{N} \times \mathbb{N} : (d_1(x_{11}, 0), \ldots, d_n(x_{n0})) - 0 \parallel_p \geq \epsilon \} \text{ belongs to } I.
\]

2.2. Definition. A non-empty family of sets \(F \subset 2^X \) is a filter on \(X \) if and only if

1. \(\phi \in F \)
2. for each \(A, B \in F \), we have imply \(A \cap B \in F \)
3. each \(A \in F \) and each \(A \subset B \), we have \(B \in F \).

2.3. Definition. An ideal \(I \) is called non-trivial ideal if \(I \neq \phi \) and \(X \notin I \). Clearly \(I \subset 2^X \) is a non-trivial ideal if and only if \(F = F(I) = \{ X - A : A \in I \} \) is a filter on \(X \).

2.4. Definition. A non-trivial ideal \(I \subset 2^X \) is called (i) admissible if and only if \(\{ \{x\} : x \in X \} \subset I \). (ii) maximal if there cannot exists any non-trivial ideal \(J \neq I \) containing \(I \) as a subset.

If we take \(I = I_f = \{ A \subseteq \mathbb{N} \times \mathbb{N} : A \text{ is a finite subset} \} \). Then \(I_f \) is a non-trivial admissible ideal of \(\mathbb{N} \) and the corresponding convergence coincides with the usual convergence. If we take \(I = I_\delta = \{ A \subseteq \mathbb{N} \times \mathbb{N} : \delta(A) = 0 \} \) where \(\delta(A) \) denote the asymptotic density of the set \(A \). Then \(I_\delta \) is a non-trivial admissible ideal of \(\mathbb{R} \times \mathbb{R} \) and the corresponding convergence coincides with the statistical convergence.

Let \(D \) denote the set of all closed and bounded intervals \(X = [x_1, x_2] \) on the real line \(\mathbb{R} \times \mathbb{N} \). For \(X, Y \in D \), we define \(X \leq Y \) if and only if \(x_1 \leq y_1 \) and \(x_2 \leq y_2 \),
\[
d(X,Y) = \max \{|x_1 - y_1|, |x_2 - y_2|\}, \text{ where } X = [x_1, x_2] \text{ and } Y = [y_1, y_2].
\]

Then it can be easily seen that \(d \) defines a metric on \(D \) and \((D, d) \) is a complete metric space. Also the relation \(\leq \) is a partial order on \(D \). A fuzzy number \(X \) is a fuzzy subset of the real line \(\mathbb{R} \times \mathbb{R} \) i.e. a mapping \(X : \mathbb{R} \to J(= [0, 1]) \) associating each real number \(t \) with its grade of membership \(X(t) \).

2.5. Definition. A fuzzy number \(X \) is said to be (i) convex if \(X(t) \geq X(s) \wedge X(r) = \min \{ X(s), X(r) \} \), where \(s < t < r \). (ii) normal if there exists \(t_0 \in \mathbb{R} \times \mathbb{R} \) such that \(X(t_0) = 1 \). (iii) upper semi-continuous if for each \(\epsilon > 0 \), \(X^{-1}([0, a + \epsilon]) \) for all \(a \in [0, 1] \) is open in the usual topology of \(\mathbb{R} \times \mathbb{R} \).

Let \(R(J) \) denote the set of all fuzzy numbers which are upper semi-continuous and have compact support, i.e. if \(X \in \mathbb{R}(J) \) \(\times \mathbb{R}(J) \) the for any \(\alpha \in [0, 1] \), \([X]^\alpha \) is compact, where \([X]^\alpha = \{ t \in \mathbb{R} \times \mathbb{R} : X(t) \geq \alpha, \text{ if } \alpha \in [0, 1] \} \), \([X]^0 \) = closure of
The set \mathbb{R} of real numbers can be embedded $\mathbb{R} (J)$ if we define $\bar{r} \in \mathbb{R} (J) \times \mathbb{R} (J)$ by

$$\bar{r} (t) = \begin{cases} 1, & \text{if } t = r \\ 0, & \text{if } t \neq r \end{cases}$$

The absolute value, $|X|$ of $X \in \mathbb{R} (J)$ is defined by

$$|X| (t) = \begin{cases} \max \{ X(t), X(-t) \}, & \text{if } t \geq 0; \\ 0, & \text{if } t < 0 \end{cases}$$

Define a mapping $\bar{d} : \mathbb{R} (J) \times \mathbb{R} (J) \to \mathbb{R}^+ \cup \{0\}$ by

$$\bar{d} (X, Y) = \sup_{0 \leq a \leq 1} d ([X]^a, [Y]^a).$$

It is known that $(\mathbb{R} (J), \bar{d})$ is a complete metric space.

2.6. Definition. A metric on $\mathbb{R} (J)$ is said to be translation invariant if $\bar{d} (X + Z, Y + Z) = \bar{d} (X, Y)$, for $X, Y, Z \in \mathbb{R} (J)$.

2.7. Definition. A sequence $X = (X_{mn})$ of fuzzy numbers is said to be convergent to a fuzzy number X_0 if for every $\epsilon > 0$, there exists a positive integer n_0 such that $\bar{d} (X_{mn}, X_0) < \epsilon$ for all $m, n \geq n_0$.

2.8. Definition. A sequence $X = (X_{mn})$ of fuzzy numbers is said to be (i) I-convergent to a fuzzy number X_0 if for each $\epsilon > 0$ such that

$$A = \{ m, n \in \mathbb{N} : \bar{d} (X_{mn}, X_0) \geq \epsilon \} \in I.$$

The fuzzy number X_0 is called I-limit of the sequence (X_{mn}) of fuzzy numbers and we write $I - \lim X_{mn} = X_0$. (ii) I-bounded if there exists $M > 0$ such that

$$\{ m, n \in \mathbb{N} : d (X_{mn}, 0) > M \} \in I.$$

2.9. Definition. A sequence space E_F of fuzzy numbers is said to be (i) solid (or normal) if $(Y_{mn}) \in E_F$ whenever $(X_{mn}) \in E_F$ and $d (Y_{mn}, 0) \leq d (X_{mn}, 0)$ for all $m, n \in \mathbb{N}$. (ii) symmetric if $(X_{mn}) \in E_F$ implies $(X_{\pi (mn)}) \in E_F$ where π is a permutation of $\mathbb{N} \times \mathbb{N}$.

Let $K = \{ m_1 n_1 < m_2 n_2 < \ldots \} \subseteq \mathbb{N}$ and E be a sequence space. A K-step space of E is a sequence space $\lambda_{mn}^E = \{ (X_{mn}, n_p) \in w^2 : (m_p n_p) \in E \}.$

A canonical preimage of a sequence $\{ (m_p n_p) \} \in \lambda_{mn}^E$ is a sequence $\{ Y_{mn} \} \in w^2$ defined as

$$Y_{mn} = \begin{cases} X_{mn}, & \text{if } m, n \in E \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space λ_{mn}^E is a set of canonical preimages of all elements in λ_{mn}^E, i.e. y is in canonical preimage of λ_{mn}^E if and only if Y is canonical preimage of some $x \in \lambda_{mn}^E$.

2.10. Definition. A sequence space E_F is said to be monotone if E_F contains the canonical pre-images of all its step spaces.

The following well-known inequality will be used throughout the article. Let $p = (p_{mn})$ be any sequence of positive real numbers with $0 \leq p_{mn} \leq \sup p_{mn} p_{mn} = G$, $D = \max \{ 1, 2G - 1 \}$ then

$$|a_{mn} + b_{mn}|^{p_{mn}} \leq D (|a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}}) \text{ for all } m, n \in \mathbb{N} \text{ and } a_{mn}, b_{mn} \in \mathbb{C}.$$
Also \(|a_{mn}|^{p_{mn}} \leq \max \{1, |a|^p \}\) for all \(a \in \mathbb{C}\).

First we procure some known results; those will help in establishing the results of this article.

2.11. Lemma. A sequence space \(E_F\) is normal implies \(E_F\) is monotone. (For the crisp set case, one may refer to Kamthan and Gupta [44], page 53).

2.12. Lemma. (Kostyrko et al., [24], Lemma 5.1). If \(I \subset 2^N\) is a maximal ideal, then for each \(A \subset N\) we have either \(A \in I\) or \(N - A \in I\).

2.13. Definition. Let \(d\) be a mapping from \(R(I) \times R(I)\) into \(R(I) \times R(I)\) and let the mappings \(L, f : [0,1] \times [0,1] \to [0,1] \times [0,1]\) be symmetric, non-decreasing Musielak modulus in both arguments and satisfy \(L \times L = 0\) and \(f \times f = 1\). Denote \([d(X,Y)]_{\alpha} = [\lambda_\alpha (X,Y), (X,Y)]\), for \(X, Y \in R(I) \times R(I)\) and \(0 < \alpha < 1\). The \((R(I) \times R(I), d, L \times L, f \times f)\) is called a fuzzy \(p\)-metric space and \(d\) a fuzzy translation metric, if

\(1\) \(d(X,Y) = 0\) if and only if \(X = Y\),
\(2\) \(d(X,Y) = d(Y,X)\) for all \(X, Y \in X\),
\(3\) for all \(X, Y, Z \in R(I) \times R(I)\), \(d(X,Y) (s + t) \geq L(d(X,Z)(s), d(Z,Y)(t))\)
whenever \(s \leq \lambda_1 (X,Z), t \leq \lambda_1 (Z,Y)\) and \((s + t) \leq \lambda_1 (X,Y)\),
\(4\) \(d(X,Y)(s + t) \leq f \times f (d(X,Z)(s), d(Z,Y)(t))\)
whenever \(s \geq \lambda_1 (X,Z), t \geq \lambda_1 (Z,Y)\) and \((s + t) \leq \lambda_1 (X,Y)\),

3. Some new sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces and examine topological and algebraic properties of the resulting sequence spaces. Let \(p = (p_{mn})\) be a sequence of positive real numbers for all \(m, n \in \mathbb{N}\). \(f = (f_{mn})\) be a Musielak-modulus function, \(X, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p\) be a fuzzy \(p\)-metric space, and \(\mu_{mn}(X) = \lambda ((m + n)! X_{mn}^{1/m+n}, \bar{0})\) \(\to \bar{0}\) and \(((m + n)! X_{mn}^{1/m+n}, \bar{0})\) \(\to \bar{0}\), as \(m, n \to \infty\) and \(\eta_{mn}(X) = sup_{mn} \lambda (X_{mn}^{1/m+n}, \bar{0}) < \infty\) and \(sup_{mn} (X_{mn}^{1/m+n}, \bar{0}) < \infty\), be a sequence of fuzzy numbers. Using the concept of fuzzy metric, we introduce the following class of sequences:

\([X_f^{2|F|}, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p] = \{X_{mn} \in w^F : \{(m, n) \in \mathbb{N} \times \mathbb{N} : [f_{mn} \{\mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))\}] \in I\}\},

\([A_f^{2|F|}, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p] = \{X_{mn} \in w^F : \{(m, n) \in \mathbb{N} \times \mathbb{N} : [f_{mn} \{\eta_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))\}] \in I\}\}.

3.1. Theorem. Let \(f = (f_{mn})\) be a Musielak-modulus function, the sequence spaces \(X_f^{2|F|}, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p\) and \(A_f^{2|F|}, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p\) are linear spaces.

Proof: It is trivial. Therefore omit the proof.

3.2. Remark. It is easy to verify \([A_f^{2|F|}, ||(d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0))||_p] = \) is a linear space.
3.3. Theorem. The class of sequences \(\left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \) is solid and as such as monotone.

Proof: Consider two sequences \((X_{mn}) \) and \((Y_{mn}) \) such that \(|X_{mn}| \leq |Y_{mn}| \), for all \(m, n \in \mathbb{N} \) and \(Y_{mn} \in \left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \). We have

\[
\lambda \left(((m+n)X_{mn})^{1/(m+n)}, 0 \right) \leq (m+n)Y_{mn}^{1/(m+n)}, \quad \text{as } m, n \to \infty.
\]

\(\Rightarrow \) \((X_{mn}) \in \left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \). Thus the class

\[
\left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right]
\]

is solid. The class of sequences \(\left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \) is monotone follows from the Remark 2.11.

3.4. Theorem. The class of sequences \(\left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \) is not convergence free.

Proof: Consider a sequence \((X_{mn}) \in \left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \) defined as follows: For \(m, n \) are even

\[
(m+n)!X_{mn}(t)^{1/(m+n)} = \begin{cases}
1 + (mn)^2 t, & \text{for } -(mn)^{-2} \leq t \leq 0, \\
1 - (mn)^2 t, & \text{for } 0 \leq t \leq (mn)^{-2}, \\
0, & \text{otherwise}
\end{cases}
\]

and for \(m, n \) are odd, \((m+n)!X_{mn}(t)^{1/(m+n)} = 0 \).

Now for \(\alpha \in (0, 1] \),

\[
(m+n)!X_{mn}^{(F)} = \begin{cases}
(\alpha - 1) (mn)^{-2}, (1 - \alpha) (mn)^{-2}, & \text{for } m, n \text{ even} \\
[0, 0], & \text{for } m, n \text{ odd}.
\end{cases}
\]

Then \(\lambda_{\alpha} \left((m+n)!X_{mn}^{(F)}, 0 \right) = (\alpha - 1) (mn)^{-2} \to 0 \), as \(m, n \to \infty \), and

\[
(\alpha - 1) (mn)^{-2} \not\to 0, \quad \text{as } m, n \to \infty.
\]

Thus, \((X_{mn}) \in \left[X_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \). Let us define a sequence \((Y_{mn}) \) as follows: For \(m, n \) are even

\[
(m+n)!Y_{mn}(t)^{1/(m+n)} = \begin{cases}
1 + (mn)^{1} t, & \text{for } -(mn)^{-1} \leq t \leq 0, \\
1 - (mn)^{1} t, & \text{for } 0 \leq t \leq (mn)^{-1}, \\
0, & \text{otherwise}
\end{cases}
\]

and for \(m, n \) are odd, \((m+n)!Y_{mn}(t)^{1/(m+n)} = 0 \).

Now for \(\alpha \in (0, 1] \),

\[
(m+n)!Y_{mn} = \begin{cases}
(\alpha - 1) (mn)^{-1}, (1 - \alpha) (mn)^{-1}, & \text{for } m, n \text{ even} \\
[0, 0], & \text{for } m, n \text{ odd}.
\end{cases}
\]

Then \(\lambda_{\alpha} \left((m+n)!Y_{mn}^{(F)}, 0 \right) = (\alpha - 1) (mn)^{-2} \not\to 0, \quad \text{as } m, n \to \infty \), and

\[
(1 - \alpha) (mn)^{-2} \not\to 0, \quad \text{as } m, n \to \infty.
\]

Thus, \((Y_{mn}) \not\in \left[Y_{mn}^{(F)}, \| (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right] \).
\[\chi_f^{2R(F)}, \| (d(x_1), d(x_2), \ldots, d(x_{n-1})) \|_p \]. Hence \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \] is not convergence free.

3.5. **Theorem.** The class of sequences \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \] is symmetric

Proof: Let \((X_{mn}) \in \chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \). Let \((Y_{mn}) \) be a arrangement of the sequence \(X_{mn} = Y_{pmqn} \) for each \(m, n \in \mathbb{N} \). Then

\[
\lambda \left((m+n)!X_{mn}^{1/m+n}, \tilde{0} \right) = \lambda \left((m+n)!Y_{pmqn}^{1/m+n}, \tilde{0} \right) \to \tilde{0}, \text{ as } m, n \to \infty,
\]

\[
\text{and } \left((m+n)!X_{mn}^{1/m+n}, \tilde{0} \right) = \left((m+n)!Y_{pmqn}^{1/m+n}, \tilde{0} \right) \to \tilde{0}, \text{ as } m, n \to \infty.
\]

Thus, \((Y_{mn}) \in \chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \). Hence the class \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \] is symmetric.

3.6. **Theorem.** The class of sequences \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \] is a sequence algebra

Proof: Let \((X_{mn}), (Y_{mn}) \in \chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \), then we have

\[
\lambda \left((m+n)!X_{mn}^{1/m+n}, \tilde{0} \right) \to \tilde{0}, \text{ as } m, n \to \infty \text{ and } \lambda \left((m+n)!Y_{mn}^{1/m+n}, \tilde{0} \right) \to \tilde{0}, \text{ as } m, n \to \infty.
\]

The result follows from the following inequalities

\[
\lambda \left((m+n)!X_{mn}^{1/m+n}, \tilde{0} \right) \leq \lambda \left((m+n)!X_{mn}^{1/m+n}, \tilde{0} \right) \leq \lambda \left((m+n)!Y_{mn}^{1/m+n}, \tilde{0} \right) \to \tilde{0}, \text{ as } m, n \to \infty.
\]

Thus, \((X_{mn} \otimes Y_{mn}) \in \chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \).

Hence the class \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \] is sequence algebra.

3.7. **Theorem.** The dual space of \[\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \]

is \[\Lambda_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p \]. In other words

\[
\chi_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p = \Lambda_f^{2R(F)}, \| (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \|_p
\]

Proof: We recall that \(x_{mn} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{(m+n)!} & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix} \), with \(\frac{1}{(m+n)!} \) in the \((m,n) \)th position and zero’s else where, with \(x = (x_{mn}) \).
which is a $p-$ metric ideal of double gai sequence of fuzzy real numbers. Hence, $x_{mn} \in \left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]$ with $x \in \left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]$ and $f \in \left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]^\ast$, where

$$\left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]^\ast$$

is the dual space of

$$\left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]$$

Take $x = (x_{mn}) \in \left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]$. Then,

$$|y_{mn}| \leq \|f\| \|d(x_{mn},0)\| < \infty \quad \forall m, n \tag{3.1}$$

Thus, (y_{mn}) is a $p-$ metric ideal of double analytic sequence of fuzzy real numbers and hence an $p-$ metric of double analytic sequence. In other words, $y \in \left[\Lambda^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]$. Therefore

$$\left[\chi^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right]^\ast = \left[\Lambda^2_{f}(F), \|(d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0))\|_p \right].$$

This completes the proof.

Competing interests: Authors have declared that no competing interests exist.

Acknowledgement: The authors thank the referee for his careful reading of the manuscript and comments that improved the presentation of the paper.

References

THE IDEAL OF χ^2 OF FUZZY REAL NUMBERS OVER FUZZY $p-$ METRIC SPACES DEFINED BY MUSIELAK

1 Department of Mathematics, SASTRA University, Thanjavur-613 401, India
E-mail address: nsmaths@yahoo.com

2 Department of Mathematics, Sri Angalamman College of Engineering and Technology, Trichirappalli-621 105, India
E-mail address: saivaraju@yahoo.com

3 Department of Mathematics, Sri Angalamman College of Engineering and Technology, Trichirappalli-621 105, India
E-mail address: priyasubu1980@gmail.com