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SOME NEW SEQUENCE SPACES DEFINED BY

A MODULUS FUNCTION AND AN INFINITE

MATRIX IN A SEMİNORMED SPACE

MURAT CANDAN

Abstract. Let ĉ denotes the space of almost convergent sequences introduced

by G.G. Lorentz [A contribution to the theory of divergent sequences, Acta
Math. 80(1948), 167–190]. The main purpose of the present paper is to intro-

duce the sequence spaces w0

(
Â, p, f, q, s

)
, w

(
Â, p, f, q, s

)
and w∞

(
Â, p, f, q, s

)
defined by a modulus function f . Some topological properties of that spaces
are examined. Also we exposed some inclusion relations among the variations

of the space.

1. Introduction

Some definitions and conventions are made this section and some lemmas will
be given as they become necessary. By a sequence space, we understand a lin-
ear subspace of the space w = CN of all complex sequences which contains φ,
the set of all finitely non-zero sequences, where C denotes the complex field and
N = {0, 1, 2, · · · } . We write l∞, c, c0 and lp for the classical sequence spaces of
all bounded, convergent, null and absolutely p−summable sequences, respectively,
where 1 ≤ p < ∞. Also by bs and cs, we denote the spaces of all bounded and
convergent series, respectively. bv is the space consisting of all sequences (xk) such
that (xk − xk+1) in l1 and bv0 is the intersection of the spaces bv and c0. w

p
0 , w

p

and wp∞ are the spaces of sequences that are strongly summable to zero, summable
and bounded of index p ≥ 1 by the Cesàro method of order 1.

Let λ denotes any of the sets l∞, c, c0, lp, bs, cs, bv, bv0, w
p
0 , w

p and wp∞. It is
a routine verification that λ is a linear space with respect to the co-ordinatewise
addition and scalar multiplication of sequences.

A sequence space λ with a linear topology is called a K−space provided each of
the maps pi : λ→ C defined by pi (x) = xi is continuous for all i ∈ N. A K−space λ
is called an FK-space provided λ is a complete linear metric space. An FK−space
whose topology is normable is called a BK−space.
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Now, we focus on the α−, β− and γ−duals of the classical sequence spaces. For
the sequence spaces λ and µ, the set S (λ, µ) defined by

S (λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (1.1)

is called the multiplier space of λ and µ. One can easily observe for a sequence
space ν that the inclusions S (λ, µ) ⊂ S (ν, µ) if ν ⊂ λ and S (λ, µ) ⊂ S (λ, ν) if
µ ⊂ ν hold. With the notation of (1.1) the α−, β− and γ−duals of a sequence
space λ, which are respectively denoted by λα, λβ and λγ , are defined by λα =
S (λ, l1) , λβ = S (λ, cs) , λγ = S (λ, bs) . The α−dual, β−dual and γ−dual are
also refered to as Köthe-Toeplitz dual, generalized Köthe-Toeplitz dual and Garling
dual, respectively [2].

We give a short survey on the concept of almost convergence. A linear functional
ϕ on l∞ is said to be a Banach limit if it has the properties, ϕ (x) > 0 when the
sequence x = (xn) has xn > 0 for all n, ϕ (e) = 1, where e = (1, 1, 1, · · · ) and
ϕ (xn+1) = ϕ (xn) for all x ∈ l∞ [1]. For more detail on the Banach limit, the reader
may refer to Çolak and Çakar [5], and Das [6]. The concept of almost convergence
was defined by Lorentz in [9], using the idea of Banach limits. A sequence x =
(xk) ∈ l∞ is said to be almost convergent to the generalized limit α if all Banach
limits of x are coincide and are equal to α [9], this is denoted by f − limxk = α.
Lorentz [9] proved that f − limxk = α if and only if limm→∞

1
m+1

∑m
k=1 xn+k = α,

uniformly in n. In the case α = 0, the sequence x is called almost null. The
spaces of almost convergent and almost null sequences are denoted by ĉ and ĉ0,
respectively. It is well-known that a convergent sequence is almost convergent such
that its ordinary and generalized limits are equal.

Maddox [12, 13] defined the strong almost convergence of a complex sequence x

to number l by 1
m

m∑
k=0

|xn+k − l| → 0, as m→∞, uniformly in n which leads to the

concept of strong almost convergence. By [ĉ] , we denote the space of all strongly
almost convergence sequences. It is immediate that the inclusion [ĉ] ⊂ ĉ strictly
holds. Also [ĉ] is a closed subspace of l∞ and the inclusions c ⊂ [ĉ] ⊂ ĉ ⊂ l∞ strictly
hold.

Notation of modulus function introduced by Nakano [14] in 1953 and used to
solve some structural problems of the scalar FK-spaces theory. For example, the
question; ”is there an FK−space in which the sequence of coordinate vectors is
bounded”, exposed by A. Wilansky, was solved by W. H. Ruckle with negative
answer [17]. The problem was treated by constructing a class of scalar FK−spaces
L (f) where f is a modulus function. L (f), in fact, is a generalization of the spaces
lp (0 < p ≤ 1) . Another extension of lp (p > 0) spaces with respect to a positive
real sequence r = (rk) was given by Simons [20]. For the definition of modulus
function and some related results, the reader may refer to [17].

Ruckle [17] proved that the inclusion L (f) ⊂ l1 holds for any modulus f and
L (f)

α
= l∞.

A sequence x = (xk) is said to be summable (C, 1) iff limn
1
n

∑n
i=1 xi exists.

Spaces of strongly Cesàro summable sequences were discussed by Kuttner [8] and
this concept was generalized by Maddox [10] and some others. The class of se-
quences which are strongly Cesàro summable with respect to a modulus was intro-
duced by Maddox [11] as an extension of the concept of the strong Cesàro summa-
bility. Connor [4] extended this definition by replacing the Cesàro matrix with
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an arbitrary nonnegative regular summability method. In [18], following Connor
[4], Savaş defined the concept of strongly almost A−summability with respect to a
modulus, but the definition introduced there is not very satisfactory and seems to
be unnatural. By specialising the infinite matrix in the definition introduced in [18],
we don’t get strongly almost convergent sequences with respect to a modulus. In
[19] Savaş introduced an alternative definition of strongly almost A−summability
with respect to a modulus. This definition seems to be more natural and contains
the definition of strongly almost convergence with respect to a modulus as a special

case. The sets w0

(
Â, f, p

)
, w

(
Â, f, p

)
and w∞

(
Â, f, p

)
will called the spaces of

strongly almost summable to zero, strongly almost summable and strongly almost
bounded with respect to the modulus f respectively [19].

The argument s, that is, the factor k−s was used by Bulut and Çakar [3], to
generalize the Maddox sequence space l (p) , where p = (pk) is a bounded sequence
of positive real numbers and s ≥ 0. It performs an extension mission. For example,
the space l (p, s) = {x ∈ w :

∑∞
k=1 k

−s |xk|pk <∞} contains l (p) as a subspace for
s > 0, and it coincides with l (p) only for s = 0.

In the present note, we introduce some new sequence spaces defined by using a
modulus function.

2. The sequence space w(Â, p, f, q, s)

Let X be a complex linear space with zero element θ and X = (X, q) be a semi-
normed space with the seminorm q. By S(X) we denote the set of all X−valued
sequences x = (xk) which is the linear space under the usual coordinatewise op-
erations. If λ = (λk) is a scalar sequence and x ∈ S(X) then we shall write
λx = (λkxk). Taking X = C we get w, the space of all complex-valued sequences.
This case is called scalar-valued case.

Let A = (amk) be a nonnegative matrix and suppose that p = (pk) be a sequence
of positive real numbers and f be a modulus function. We define the sequence spaces
over the complex field C as follows

w0(Â, p, f, q, s) =

{
x ∈ S (X) : lim

m→∞

∑
k

amk
ks

[f(q(xk+n))]pk = 0,

uniformly in n, s ≥ 0
}

w(Â, p, f, q, s) =

{
x ∈ S (X) : ∃l ∈ C � lim

m→∞

∑
k

amk
ks

[f(q(xk+n − le))]pk = 0,

uniformly in n, l ∈ C, s ≥ 0
}

w∞(Â, p, f, q, s) =

{
x ∈ S (X) : sup

m,n

∑
k

amk
ks

[f(q(xk+n))]pk <∞, s ≥ 0

}
If φ(X) is the space of finite sequences in X, then we have φ(X) ⊆ w(Â, p, f, q, s).

The following inequality and the sequence p = (pk) will be frequently used through-
out this paper.

These spaces are reduced to some sequence spaces in the literature in the special
case. For example, taking (X, q) = (C, |, |), A = (C, 1) , the Cesàro matrix, pk = 1,
for all k and s = 0, we get the spaces [ĉ0 (f)] , [ĉ (f)] and [ĉ (f)]∞ introduced by
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Pehlivan [16]. Moreover, we derive the spaces investigated in [7, 12, 13, 15, 19] as
a special case.

If ak, bk ∈ C and 0 < pk ≤ sup pk = H for each k, we have (see Maddox [10,
p.346])

|ak + bk|pk ≤ C(|ak|pk + |bk|pk), (2.1)

where C = max (1, 2H−1).
We now establish a number of useful theorems about the sequence spaces which

were defined above. We now have

Theorem 2.1. Let f be a modulus, p = (pk) ∈ `∞ and A = (amk) be a nonnegative

regular matrix. Then w0(Â, p, f, q, s) ⊂ w(Â, p, f, q, s) ⊂ w∞(Â, p, f, q, s).

Proof. It is obvious that w0(Â, p, f, q, s) ⊂ w(Â, p, f, q, s). Suppose that x ∈
w(Â, p, f, q, s). Since q is a seminorm, there exists an integer R such that q (l) ≤ R.
Then, because of f is a modulus function and A = (amk) is a nonnegative regular
matrix we can write from (2.1) that∑

k

amkk
−s [f (q (xk+n))]

pk ≤ C

{∑
k

amkk
−s [f (q (xk+n − l))]pk

+ [Rf (1)]
H
∑
k

amkk
−s

}
.

Therefore x ∈ w∞(Â, p, f, q, s) and this completes the proof. �

Theorem 2.2. Let p = (pk) be a bounded, then w0(Â, p, f, q, s), w(Â, p, f, q, s) and

w∞(Â, p, f, q, s) are linear spaces over the complex field C.

Proof. We consider only w(Â, p, f, q, s). Others can be treated similarly. Let

x, y ∈ w(Â, p, f, q, s) and λ, µ ∈ C, suppose that x → l1

[
w(Â, p, f, q, s)

]
and

y → l2

[
w(Â, p, f, q, s)

]
. For λ, µ there exist the integers Mλ and Nµ such that

|λ| ≤Mλ and |µ| ≤ Nµ. Combining (2.1) with the definitions of f and q, we have

amkk
−s{f(q(λxk+n + µyk+n − (λl1 + µl2)))}pk ≤ Camkk−sMH

λ [f(q(xk+n − l1))]pk

+ Camkk
−sNH

µ [f(q(yk+n − l2))]pk

which leads us by summing over 1 ≤ k ≤ ∞ that we get λx+ µy ∈ w(Â, p, f, q, s).
�

Theorem 2.3. The spaces w0(Â, p, f, q, s) and w(Â, p, f, q, s) are paranormed spaces
by g defined by

g (x) = sup
m

{∑
k

amkk
−s[f(q(xk+n))]pk

} 1
M

where M = max (1, H = supk pk) .

Proof. From Teorem 2.1, g (x) exists for each x ∈ w0(Â, p, f, q, s). Clearly g (θ) = 0,
g (x) = g (−x) and by Minkowski’s inequality g (x+ y) ≤ g (x) + g (y) . For the
continuity of scalar multiplication suppose that (µt) is a sequence of scalars such
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that |µt − µ| → 0 and g (xt − x)→ 0 for arbitrary sequence (xt) ∈ w0(Â, p, f, q, s).
We shall show that g (µtxt − µx)→ 0 as t→∞. Say τt = |µt − µ| then{∑

k

amkk
−s[f(q(µtxtk+n − µxk+n))]pk

} 1
M

≤

{∑
k

{
a

1
M

mkk
− s

M [A (t, k, n)]
pk
M

+ a
1
M

mkk
− s

M [B (t, k, n)]
pk
M

}M} 1
M

where A (t, k, n) = Rf
(
q
(
xtk+n − xk+n

))
, B (t, k, n) = f (τtq (xk+n)) and R =

1 + max {1, sup |µt|} .

g
(
µtxt − µx

)
≤ R H

M sup
m,n

{∑
k

amkk
−s
[
A (t, k, n)

R

]pk} 1
M

+ sup
m,n

{∑
k

amkk
−s [B (t, k, n)]

pk

} 1
M

= R
H
M g
(
xt − x

)
+ sup
m,n

{∑
k

amkk
−s [B (t, k, n)]

pk

} 1
M

.

Because of g (xt − x)→ 0 we must only show that supm,n {
∑
k amkk

−s [B (t, k, n)]
pk}

1
M

→ 0 as t → ∞. There exists a positive integer t0 such that 0 ≤ τt ≤ 1 for t > t0.
Write

sup
m,n

{ ∞∑
k=m+1

amkk
−s [f (q (xk+n))]

pk

} 1
M

→ 0 (m→∞) .

Hence, for every ε > 0, there exists a positive integer m0 such that

sup
m,n

{ ∞∑
k=m0+1

amkk
−s [f (q (xk+n))]

pk

} 1
M

<
ε

2
.

For t > t0, since τtq (xk+n) ≤ q (xk) , we get

amkk
−s [f (τt (q (xk+n)))]

pk ≤ amkk−s [f (q (xk+n))]
pk

for each n and k. This implies

sup
m,n

{ ∞∑
k=m0+1

amkk
−s [f (τt (q (xk+n)))]

pk

} 1
M

≤ sup
m,n

{ ∞∑
k=m0+1

amkk
−s [f (q (xk+n))]

pk

} 1
M

<
ε

2
.

Now, the function supm,n {
∑m0

k=1 amkk
−s [f (τt (q (xk+n)))]

pk} is continuous. Hence,

there exists a δ (0 < δ < 1) such that supm,n {
∑m0

k=1 amkk
−s [f (τt (q (xk+n)))]

pk} ≤(
ε
2

)M
for 0 < τt < δ. Also we can find a number ∆ such that τt < δ for t > ∆. So, for
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t > ∆, we have supm,n {
∑m0

k=1 amkk
−s [f (τt (q (xk+n)))]

pk}
1
M < ε

2 , so eventually,

sup
m,n

{∑
k

amkk
−s [f (τt (q (xk+n)))]

pk

} 1
M

≤ sup
m,n

{
m0∑
k=1

amkk
−s [f (τt (q (xk+n)))]

pk

} 1
M

+ sup
m,n

{ ∞∑
k=m0+1

amkk
−s [f (τt (q (xk+n)))]

pk

} 1
M

<
ε

2
+
ε

2
= ε

This shows that supm,n {
∑
k amkk

−s [f (τt (q (xk+n)))]
pk}

1
M → 0 (t→∞) . Thus

w0(Â, p, f, q, s) is paranormed space by g. �

Theorem 2.4. w0

(
Â, p, f, q, s

)
is complete with respect to its paranorm whenever

(X, q) is complete.

Proof. Suppose (xi) is a Cauchy sequence in w0(Â, p, f, q, s). Therefore

g(xi − xj) = sup
m,n

{∑
k

amkk
−s
[
f
(
q
(
xik+n − x

j
k+n

))]pk} 1
M

→ 0 as i, j →∞

(2.2)
also, for each n and k

k−s
[
f
(
q
(
xik+n − x

j
k+n

))]pk
→ 0 as i, j →∞

and so q
(
xik+n − x

j
k+n

)
→ 0 (i, j →∞) from the continuity of f. It follows that

the sequence
(
xik+n

)
is a Cauchy in (X, q) for each fixed n and k. Then by the

completeness of (X, q) we get the sequence (xk+n) ∈ X such that

q
(
xik+n − xk+n

)
→ 0 (j →∞) . (2.3)

It is easy to see the validity of the inequality∣∣∣q (xik+n − xjk+n)− q (xik+n − xk+n)∣∣∣ ≤ q (xik+n − xk+n) .
We have

q
(
xik+n − x

j
k+n

)
→ q

(
xik+n − xk+n

)
(j →∞) .

from (2.3) . Now, for each ε > 0 there exist i0 (ε) such that
[
g(xi − xj)

]M
< εM for

i, j > i0. Also

sup
m,n

{
m0∑
k=1

amkk
−s
[
f
(
q
(
xik+n − x

j
k+n

))]pk}
≤ sup

m,n

{∑
k

amkk
−s
[
f
(
q
(
xik+n − x

j
k+n

))]pk}
=
[
g(xi − xj)

]M
.

Letting j →∞ we have

sup
m,n

{
m0∑
k=1

amkk
−s
[
f
(
q
(
xik+n − x

j
k+n

))]pk}
→ sup

m,n

{
m0∑
k=1

amkk
−s [f (q (xik+n − xk+n))]pk

}
< εM
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for i > i0. Since m0 is arbitrary, by taking m0 →∞ we obtain

sup
m,n

{∑
k

amkk
−s [f (q (xik+n − xk+n))]pk

} 1
M

< ε

for all m and n that is
g
(
xi − x

)
→ 0 as i→∞ .

We first need to show x ∈ w0(Â, p, f, q, s). We know that g(xi) is bounded, say,
g(xi) ≤ K. Futhermore we have

amkk
−s [f (q (xik+n − xk+n))]pk → 0 (i→∞) .

Now we can determine a sequence ηk ∈ c0
(
0 < ηik ≤ 1

)
for each k, such that

amkk
−s [f (q (xik+n − xk+n))]pk ≤ ηikamkk−s [f (q (xik+n))]pk .

On the other hand,

[f (q (xk+n))]
pk ≤ C

{[
f
(
q
(
xik+n − xk+n

))]pk
+
[
f
(
q
(
xik+n

))]pk}
where C = max

(
1, 2H−1

)
; H = sup pk. Also we have

amkk
−s [f (q (xk+n))]

pk ≤ Camkk−s
{[
f
(
q
(
xik+n − xk+n

))]pk
+
[
f
(
q
(
xik+n

))]pk}
≤ C

(
ηik + 1

)
amkk

−s [f (q (xik+n))]pk
from the last inequality above, we obtain x ∈ w0(Â, p, f, q, s) and this completes
the proof of the theorem. �

Lemma 2.5. Let f1, f2 are modulus function and 0 < δ < 1. If f1 (t) > δ for
t ∈ [0,∞) then

(f2 ◦ f1) (t) ≤ 2f2 (1)

δ
f1 (t)

[11].

Theorem 2.6. Let f1, f2 are the modulus function and s, s1, s2 > 0. Then

i) lim sup f1(t)
f2(t)

<∞ implies w0(Â, p, f2, q, s) ⊂ w0(Â, p, f1, q, s),

ii) w0(Â, p, f1, q, s) ∩ w0(Â, p, f2, q, s) ⊆ w0(Â, p, f1 + f2, q, s),

iii) If the matrixA = (amk) is a regular matrix and s > 1, then w0(Â, p, f1, q, s) ⊆
w0(Â, p, f1 ◦ f2, q, s),

iv) s1 ≤ s2 implies w0(Â, p, f, q, s1) ⊆ w0(Â, p, f, q, s2).

Proof. i) Since there exists a K > 0 such that f1 (t) ≤ f2 (t) by the hypothesis,
therefore we can write that

amkk
−s [f1 (q (xk+n))]

pk ≤ KHamkk
−s [f2 (q (xk+n))]

pk .

Let x ∈ w0(Â, p, f2, q, s). When adding the above inequality from k = 1 to ∞, we

have x ∈ w0(Â, p, f1, q, s).
ii) The relation follows from the inequality

amkk
−s [(f1 + f2) (q (xk+n))]

pk = amkk
−s [f1 (q (xk+n)) + f2 (q (xk+n))]

pk

≤ Camkk−s {[f1 (q (xk+n))]
pk + [f2 (q (xk+n))]

pk}

where C = max
(
1, 2H−1

)
.
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iii) Let 0 < δ < 1, and define the sets N1 = {k ∈ N : f1 (q (xk+n)) ≤ δ} and
N2 = {k ∈ N : f1 (q (xk+n)) > δ}. It follows from Lemma 2.5 that

(f2 ◦ f1) (q (xk+n)) ≤ 2f2 (1)

δ
f1 (q (xk+n))

when k ∈ N2. If k ∈ N1 then

(f2 ◦ f1) (q (xk+n)) ≤ f2 (δ) ,

and so

k−s [(f2 ◦ f1) (q (xk+n))]
pk ≤ ε1k−s

for x ∈ w0(Â, p, f1, q, s), where ε1 = max
{

[f2 (δ)]
inf pk , [f2 (δ)]

sup pk
}
. On the other

hand

amkk
−s [(f2 ◦ f1) (q (xk+n))]

pk ≤ amkk−s
[

2f2 (1)

δ
f1 (q (xk+n))

]pk
≤ ε2amkk−s [f1 (q (xk+n))]

pk

for k ∈ N2.Where ε2 = max

{[
2f2(1)
δ

]inf pk
,
[
2f2(1)
δ

]sup pk}
.Now, say ε = max {ε1, ε2}

and we get∑
k

amkk
−s [(f2 ◦ f1) (q (xk+n))]

pk ≤ ε

{∑
k

amkk
−s +

∑
k

amkk
−s [f (q (xk+n))]

pk

}
for k ∈ N1 ∪N2 = N. This implies x ∈ w0(Â, p, f1 ◦ f2, q, s). �

Theorem 2.7. Let s > 1 and f be bounded and A be a nonnegative regular matrix.

When x ∈ w∞
(
Â, p, f, q, s

)
∑
k

akxk is convergent iff (ak) ∈ φ.

Proof. The sufficiency is trivial.
For the necessity, suppose that a /∈ φ. Then there is an increasing sequence (mk)

of positive integers such that |amk
| > 0.

Let us define

yk =

{ u
q(u)amk

, k = mk

θ , k 6= mk

where u ∈ X such that q(u) > 0. Since f is bounded and s > 1,∑
k

amkk
−s[f(q(yk+n))]pk <∞

hence y ∈ w∞(Â, p, f, q, s) but
∑
k

akyk = 1 + 1 + 1 + · · · = ∞, a contradiction the

fact (akyk) ∈ cs. This completes the proof. �

Corollary 2.8. Let s > 1 and f be bounded. Then, w
(
Â, p, f, q, s

)β
= φ.

Proof. One can easily show this fact by the similar way used in proving Theorem
2.7. So, we omit the detail. �
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