ON UPPER BOUNDS OF $H_{2,1}(f)$ AND $H_{2,2}(f)$ HANKEL DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS

MUHAMMET KAMALI

Abstract

In this paper, we give upper bounds of the Hankel determinants $H_{2,1}(f)$ and $H_{2,2}(f)$ for the classes $S_{(\lambda, n)}^{*}$, where f is analytic in the open unit disk $\Delta=\{z \in C:|z|<1\}$ and normalized so that $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$

1. INTRODUCTION

Let A be the collection of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \Delta \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z \in C:|z|<1\}$ and let S denote the subclass of A consisting of functions which are univalent in Δ.

With a view to recalling the principal of subordination between analytic functions, let $f(z)$ and $g(z)$ be analytic functions in Δ. Then we say that the function $f(z)$ is subordinate to $g(z)$ in Δ, if there exits a Schwarz function $w(z)$, analytic in Δ with

$$
w(0)=0 \text { and }|w(z)|<1, \quad(z \in \Delta)
$$

such that $f(z)=g(w(z))$. We denote this subordination by $f(z) \prec g(z)$. If g is a univalent function in Δ, then

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\Delta) \subset g(\Delta)
$$

The famous coefficient conjucture Beiberbach conjucture for the functions $f \in S$ of the form (1.1) was first presented by Beiberbach [25] in 1916 and proven by

[^0]de-Branges [26] in 1985. In between the years 1916 and 1985, many mathematicians worked to prove Beiberbach's conjucture. Consequently, they defined several subclasses of S connected with different image domains.

Among these, the families S^{*}, C and K of starlike functions and convex functions respectively, are the most fundamental subclasses of S and have a nice geometric interpretation. These families are defined as follows:

$$
\begin{aligned}
S^{*} & =\left\{f \in S: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z},(z \in E)\right\} \\
C & =\left\{f \in S: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{1+z}{1-z},(z \in E)\right\}
\end{aligned}
$$

A function $f \in \mathrm{~A}$ is said to be starlike of order $\alpha, 0 \leq \alpha<1$, if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \Delta)
$$

We denote this class by $S^{*}(\alpha)$. If $\alpha=0$, then $S^{*}(0)=S^{*}$ is the well-known class of starlike functions.

By $C(\alpha),-\frac{1}{2} \leq \alpha<1$, we denote the class Ozaki close-to-convex of functions $f \in \mathrm{~A}$ for

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \Delta)
$$

The special case of this class, when $\alpha=-1 / 2$ was introduced by Ozaki in 1941 [1] and it is a subclass of the class of close-to-convex functions. This, general form of the class, was introduced [2] by Kargar and Ebadian. We note that for $\alpha=0$ we have the class of convex functions.

Similarly, by $\wp(\alpha), 0<\alpha \leq 1$, we denote the class of functions $f \in \mathrm{~A}$ for which

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<1+\frac{\alpha}{2} \quad(z \in \Delta)
$$

Ozaki [1] introduced the class $\wp(1)$ and proved that functions in $\wp(1)$ are univalent in the unit disk. Later, Umezawa [3, Sakaguchi 4 and R.Singh and S.Singh [5] showed, respectively, that functions in $\wp(1)$ are convex in one direction, close-toconvex and starlike.

In the 1960s Pommerenke [6], 7] defined the Hankel determinant $H_{q, n}(f)$ for a given f of the form (1.1) f as follows

$$
H_{q, n}(f)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{1.2}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right|
$$

where $n, q \in \mathbb{N}=\{1,2,3, \ldots\}$. In particular,

$$
H_{2,1}(f)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|=a_{3}-a_{2}^{2} \quad \text { is } \quad H_{2,2}(f)=\left|\begin{array}{cc}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2}
$$

The studies on Hankel determinants are concentrated on estimating $H_{2,2}(f)$ and $H_{3,1}(f)$ for different subclasses of S. The absolute sharp bounds of the functional $H_{2,2}(f)$ were found in [8], [9] for each of the families S^{*}, C. In [9, Janteng et al. proved that $\left|H_{2,2}(f)\right| \leq 1$ for S^{*} and $\left|H_{2,2}(f)\right| \leq \frac{1}{8}$ for K, where S^{*} and K are very well known classes of starlike and convex functions. The estimation of the determinant $\left|H_{3,1}(f)\right|$ is very hard as compared to deriving the bound of $\left|H_{2,2}(f)\right|$. The paper on $\left|H_{3,1}(f)\right|$ was given in 2010 by Babalola 10 , in which he obtained the upper bound of $H_{3,1}(f)$ for the families of S^{*}, C. Later on, many researchers published their work regarding $\left|H_{3,1}(f)\right|$ for different subclasses of univalent functions. For additional details see[11, [15]. In 2017, Zaprawa [16] improved the results of Babalola. In 2018, Kowalczyk et al. [17] and Lecko et al. 18 obtained the sharp inequalities:

$$
\left|H_{3,1}(f)\right| \leq \frac{4}{35} \quad \text { and } \quad\left|H_{3,1}(f)\right| \leq \frac{1}{9}
$$

for the recognizable families K and $S^{*}\left(\frac{1}{2}\right)$, respectively, where the symbol $S^{*}\left(\frac{1}{2}\right)$ stands for the family of starlike functions of order $\frac{1}{2}$. Arif M. et al. [19] obtained the upper bound of $\left|H_{3,1}(f)\right|$ for the subclasses $S_{\sin }^{*}, C_{\sin }$ and $R_{\sin }$ in in 2019 . In 2019, Shi L. et al. 20] investigated the estimate of $\left|H_{3,1}(f)\right|$ for the subclasses $S_{c a r}^{*}, C_{c a r}$ and $R_{c a r}$ of analytic functions connected with the cardioid domain. In 2019, Zaprawa [21] studied the Hankel determinant for univalent functions related to the exponential function. Additionally, in recent years, S.Verma et al. 28 and D.Breaz et al. [29] have worked on the upper bounds of Hankel determinants.

For $f \in A, n \in \mathbb{N}=\{0,1,2,3, \ldots\}$, the operator $D^{n} f$ is defined by $D^{n}: A \rightarrow A$ [22]

$$
D^{0} f(z)=f(z) \quad D^{n+1} f(z)=z\left[D^{n} f(z)\right]^{\prime}, z \in E .
$$

If $f \in A, f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, then $\quad D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \quad z \in E$.
Let $n \in \mathbb{N}=\{0,1,2,3, \ldots\}$ and $\lambda \geq 0$. We let D_{λ}^{n}, as denoted in [23], be the operator defined by;

$$
\begin{gathered}
D_{\lambda}^{n}: A \rightarrow A \\
D_{\lambda}^{0} f(z)=f(z) \\
D_{\lambda}^{1} f(z)=(1-\lambda) D_{\lambda}^{0} f(z)+\lambda z\left(D_{\lambda}^{0} f(z)\right)^{\prime}=(1-\lambda) f(z)+\lambda z f^{\prime}(z) \\
\cdots
\end{gathered}
$$

We observe that D_{λ}^{n} is a linear operator and for $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, we have [24]

$$
D_{\lambda}^{n} f(z)=z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} a_{k} z^{k}
$$

Now, we define a subclass of analytic functions as follows:

Definition 1.1. A function $f \in A$ is said to be starlike of order α, for $0 \leq \alpha<1$, if and only if

$$
\operatorname{Re}\left[\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}\right]>\alpha \quad(z \in \Delta)
$$

We denote this class by $S_{(\lambda, n)}^{*}(\alpha)$. If $n, \lambda=0$, then $S_{(0,0)}^{*}(0)=S^{*}(\alpha)$ is the well -known class of starlike functions.

2. SOME INEQUALITIES AND MAIN RESULTS

For the function $\psi(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$. (with $|\psi(z)|<1, z \in \Delta$) the next relations is valid (for example [7], expression (13) on page 128):

$$
\begin{align*}
\left|c_{1}\right| & \leq 1 \tag{2.1}\\
\left|c_{2}\right| & \leq 1-\left|c_{1}\right|^{2} \tag{2.2}\\
\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)+\overline{c_{1}} c_{2}^{2}\right| & \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2} \tag{2.3}
\end{align*}
$$

From (2.3), we can write

$$
\begin{array}{r}
\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)+\overline{c_{1}} c_{2}^{2}\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2} \Rightarrow \\
\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)\right|-\left|\bar{c}_{1} c_{2}^{2}\right| \leq\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)+\overline{c_{1}} c_{2}^{2}\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2} \Rightarrow \\
\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)\right|-\left|\overline{c_{1}} c_{2}^{2}\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2} \Rightarrow \\
\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)\right| \leq\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2}+\left|\overline{c_{1}}\right|\left|c_{2}^{2}\right| \Rightarrow \\
\left|c_{3}\right| \leq \frac{\left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2}+\left|\overline{c_{1}}\right|\left|c_{2}^{2}\right|}{\left|\left(1-\left|c_{1}\right|^{2}\right)\right|} \Rightarrow \\
\left|c_{3}\right| \leq 1-\left|c_{1}\right|^{2}-\frac{\left|c_{2}\right|^{2}}{\left(1+\left|c_{1}\right|\right)} \tag{2.4}
\end{array}
$$

Let $0 \leq c_{1} \leq 1$. In this case, since $0 \leq c_{2} \leq 1$, from (2.4) is written

$$
\begin{equation*}
\left|c_{3}\right| \leq 1-c_{1}^{2}-\frac{c_{2}^{2}}{1+c_{1}} \tag{2.5}
\end{equation*}
$$

Let's take $c_{1}=x$ and $c_{2}=y$ to get the maksimum value of the right side of (2.5). Let's take

$$
\varphi(x, y)=1-x^{2}-\frac{y^{2}}{1+x}
$$

Let's calculate the maximum value of the bivariate function

$$
\left.\begin{array}{c}
\varphi_{x}(x, y)=-2 x+\frac{y^{2}}{(1+x)^{2}} \\
\varphi_{y}(x, y)=-\frac{2 y}{(1+x)}
\end{array}\right\} \Rightarrow x=0, y=0 \quad \begin{aligned}
& \varphi_{x x}(x, y)=-2-\frac{2 y^{2}}{(1+x)^{3}}, \quad \varphi_{y y}(x, y)=-\frac{2}{(1+x)}, \quad \varphi_{x y}(x, y)=\frac{2 y}{(1+x)^{2}}
\end{aligned}
$$

According to the values of the second-order partial derivatives at the point $(0,0)$, the following inequalities are written as

$$
\left[\varphi_{x y}(0,0)\right]^{2}-\varphi_{x x}(0,0) \varphi_{y y}(0,0)=-4<0 \quad \text { and } \quad \varphi_{x x}(0,0)=-2<0
$$

then the point $(0,0)$ is a maximum of $\varphi(x, y)$ and

$$
\max \varphi(x, y)=1
$$

So,

$$
\begin{equation*}
\left|c_{3}\right| \leq 1 \tag{2.6}
\end{equation*}
$$

is obtained.
Theorem 2.1. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belongs to the class $S_{(\lambda, n)}^{*}(\alpha), 0 \leq$ $\alpha<1$. Then we have the coefficients estimation as follows.

$$
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{(1+\lambda)^{n}}, \quad\left|a_{3}\right| \leq \frac{(1-\alpha)(3-2 \alpha)}{(1+2 \lambda)^{n}}, \quad\left|a_{4}\right| \leq \frac{2(1-\alpha)\left(2 \alpha^{2}-7 \alpha+7\right)}{3(1+3 \lambda)^{n}}
$$

Proof. From the definition of the class $S_{(\lambda, n)}^{*}$, we have

$$
\begin{equation*}
\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}=\alpha+(1-\alpha) \frac{1+\psi(z)}{1-\psi(z)}=1+2(1-\alpha)\left\{\psi(z)+\psi^{2}(z)+\psi^{3}(z)+\ldots\right\} \tag{2.7}
\end{equation*}
$$

where ψ is analytic in Δ with $\psi(0)=0$ and $|\psi(z)|<1, z \in \Delta$.
Let $\psi(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ From (2.7), we have

$$
\begin{align*}
\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)} & =\frac{z+2(1+\lambda)^{n} a_{2} z^{2}+3(1+2 \lambda)^{n} a_{3} z^{3}+4(1+3 \lambda)^{n} a_{4} z^{4}+\ldots}{z+(1+\lambda)^{n} a_{2} z^{2}+(1+2 \lambda)^{n} a_{3} z^{3}+(1+3 \lambda)^{n} a_{4} z^{4}+\ldots} \\
& =1+(1+\lambda)^{n} a_{2} z+\left[2(1+2 \lambda)^{n} a_{3}-(1+\lambda)^{2 n} a_{2}^{2}\right] z^{2} \\
& +\left[3(1+3 \lambda)^{n} a_{4}-3(1+2 \lambda)^{n}(1+\lambda)^{n} a_{2} a_{3}+(1+\lambda)^{3 n} a_{2}^{3}\right] z^{3} \\
& +\cdots \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
& 1+2(1-\alpha)\left\{\psi(z)+\psi^{2}(z)+\psi^{3}(z)+\ldots\right\} \\
& \quad=1+2(1-\alpha)\left\{c_{1} z+\left(c_{2}+c_{1}^{2}\right) z^{2}+\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right) z^{3}+\ldots\right\} . \tag{2.9}
\end{align*}
$$

From 2.8 and 2.9, comparing the coefficients on z, z^{2}, z^{3} in 2.7 and doing necessary calculations, finally we obtain

$$
\begin{gather*}
a_{2}=\frac{2(1-\alpha) c_{1}}{(1+\lambda)^{n}} \tag{2.10}\\
a_{3}=\frac{(1-\alpha)\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}}{(1+2 \lambda)^{n}} \tag{2.11}\\
a_{4}=\frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{c_{3}+(5-3 \alpha) c_{1} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right\} \tag{2.12}
\end{gather*}
$$

If 2.1 is substituted in 2.10, we write

$$
\begin{equation*}
\left|a_{2}\right|=\left|\frac{2(1-\alpha) c_{1}}{(1+\lambda)^{n}}\right|=\frac{2(1-\alpha)}{(1+\lambda)^{n}}\left|c_{1}\right| \leq \frac{2(1-\alpha)}{(1+\lambda)^{n}} \tag{2.13}
\end{equation*}
$$

and if 2.2 is substituted is in 2.11, we also write

$$
\begin{aligned}
& \left|a_{3}\right|=\left|\frac{(1-\alpha)\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}}{(1+2 \lambda)^{n}}\right|=\frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left|\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}\right| \\
& \\
& \leq \frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{\left|c_{2}\right|+(3-2 \alpha)\left|c_{1}^{2}\right|\right\} \\
& \quad \leq \frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{1-\left|c_{1}\right|^{2}+(3-2 \alpha)\left|c_{1}\right|^{2}\right\} \\
& \quad=\frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{1+2(1-\alpha)\left|c_{1}\right|^{2}\right\} \\
& \quad=\frac{(1-\alpha)(3-2 \alpha)}{(1+2 \lambda)^{n}}
\end{aligned}
$$

By means of the similar operations we can obtain an upper bound for $\left|a_{4}\right|$ as follows,

$$
\begin{aligned}
& a_{4}=\frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{c_{3}+(5-3 \alpha) c_{1} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right\} \Rightarrow \\
& \left|a_{4}\right|=\left|\frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{c_{3}+(5-3 \alpha) c_{1} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right\}\right| \Rightarrow \\
& \left|a_{4}\right|=\frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left|c_{3}+(5-3 \alpha) c_{1} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right| \Rightarrow \\
& \left|a_{4}\right| \leq \frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{\left|c_{3}\right|+(5-3 \alpha)\left|c_{1}\right|\left|c_{2}\right|+\left(2 \alpha^{2}-7 \alpha+6\right)\left|c_{1}^{3}\right|\right\} \\
& \leq \frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{\left|c_{3}\right|+(5-3 \alpha) c_{1}\left(1-c_{1}^{2}\right)+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right\} \Rightarrow \\
& \quad \leq \frac{2(1-\alpha)}{3(1+3 \lambda)^{n}}\left\{1+(5-3 \alpha)+\left(2 \alpha^{2}-4 \alpha+1\right)\right\} \Rightarrow \\
& \left|a_{4}\right| \leq \frac{2(1-\alpha)\left(2 \alpha^{2}-7 \alpha+7\right)}{3(1+3 \lambda)^{n}}
\end{aligned}
$$

Theorem 2.2. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belongs to the class $S_{(\lambda, n)}^{*}(\alpha), 0 \leq$ $\alpha<1$. Then we have next sharp estimation:

$$
\left|H_{2,1}(f)\right| \leq(1-\alpha)\left\{\frac{3}{(1+2 \lambda)^{n}}+\frac{4(1-\alpha)}{(1+\lambda)^{2 n}}\right\} \leq \frac{(1-\alpha)(7-6 \alpha)}{(1+2 \lambda)^{n}}
$$

Proof. From the definition of Hankel determinant has the form of $H_{2,1}(f)=a_{3}-a_{2}^{2}$. In this definition by using 2.10 and 2.11 and taking module $H_{2,1}(f)$ is written as

$$
\begin{array}{r}
H_{2,1}(f)=a_{3}-a_{2}^{2}=\frac{(1-\alpha)\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}}{(1+2 \lambda)^{n}}-\left\{\frac{2(1-\alpha) c_{1}}{(1+\lambda)^{n}}\right\}^{2} \Rightarrow \\
\left|H_{2,1}(f)\right|=\left|a_{3}-a_{2}^{2}\right| \leq \frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{\left|c_{2}\right|+(3-2 \alpha)\left|c_{1}^{2}\right|\right\}+\frac{4(1-\alpha)^{2}}{(1+\lambda)^{2 n}}\left|c_{1}^{2}\right| \Rightarrow \\
\left|H_{2,1}(f)\right| \leq \frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{1-\left|c_{1}^{2}\right|+(3-2 \alpha)\left|c_{1}^{2}\right|\right\}+\frac{4(1-\alpha)^{2}}{(1+\lambda)^{2 n}}\left|c_{1}^{2}\right| \Rightarrow \\
\left|H_{2,1}(f)\right| \leq \frac{(1-\alpha)}{(1+2 \lambda)^{n}}\left\{1+2(1-\alpha)\left|c_{1}^{2}\right|\right\}+\frac{4(1-\alpha)^{2}}{(1+\lambda)^{2 n}}\left|c_{1}^{2}\right|
\end{array}
$$

Thus, from the 2.1

$$
\left|H_{2,1}(f)\right| \leq \frac{(1-\alpha)(3-2 \alpha)}{(1+2 \lambda)^{n}}+\frac{4(1-\alpha)^{2}}{(1+\lambda)^{2 n}}
$$

is obtained. Taking into account the following inequality

$$
(1+\lambda)^{2 n} \geq(1+2 \lambda)^{n} \Rightarrow \frac{1}{(1+2 \lambda)^{n}} \geq \frac{1}{(1+\lambda)^{2 n}}
$$

finally, it also can be written as

$$
\left|H_{2,1}(f)\right| \leq \frac{(1-\alpha)(3-2 \alpha)}{(1+2 \lambda)^{n}}+\frac{4(1-\alpha)^{2}}{(1+2 \lambda)^{n}}=\frac{(1-\alpha)(7-6 \alpha)}{(1+2 \lambda)^{n}}
$$

Theorem 2.3. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belongs to the class $S_{(x, n)}^{*}(\alpha), 0 \leq$ $\alpha<1$. Then we have next sharp estimation:

$$
\left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}\left(20 \alpha^{2}-64 \alpha+51\right)}{3(1+\lambda)^{2 n}}
$$

Proof. From the definition of Hankel determinant has the form of $H_{2,2}(f)=a_{2} a_{4}-$ a_{3}^{2}. In this definition by using $2.10,2.11$ and 2.12 and taking module $H_{2,2}(f)$ is written as

$$
\begin{aligned}
& H_{2,2}(f)=\left\{\frac{2(1-\alpha) c_{1}}{(1+\lambda)^{n}}\right\} \frac{2(1-\alpha)}{3(1+3 \lambda)^{n}} \\
& \left\{c_{3}+(5-3 \alpha) c_{1} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{3}\right\}-\left[\frac{(1-\alpha)\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}}{(1+2 \lambda)^{n}}\right]^{2} \\
& =\frac{4(1-\alpha)^{2}}{3(1+\lambda)^{n}(1+3 \lambda)^{n}}\left\{c_{3} c_{1}+(5-3 \alpha) c_{1}^{2} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{4}\right\} \\
& -\frac{(1-\alpha)^{2}}{(1+2 \lambda)^{2 n}}\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}^{2} \Rightarrow \\
& \left|H_{2,2}(f)\right|=\frac{4(1-\alpha)^{2}}{3(1+\lambda)^{n}(1+3 \lambda)^{n}} \\
& \left|c_{3} c_{1}+(5-3 \alpha) c_{1}^{2} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{4}\right|+\frac{(1-\alpha)^{2}}{(1+2 \lambda)^{2 n}}\left|\left\{c_{2}+(3-2 \alpha) c_{1}^{2}\right\}^{2}\right|
\end{aligned}
$$

Taking into account the following inequality

$$
1+\lambda \leq 1+2 \lambda \leq 1+3 \lambda \Rightarrow \frac{1}{(1+3 \lambda)} \leq \frac{1}{(1+2 \lambda)} \leq \frac{1}{(1+\lambda)}
$$

finally, it also can be written as

$$
\begin{aligned}
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{4\left|c_{3} c_{1}+(5-3 \alpha) c_{1}^{2} c_{2}+\left(2 \alpha^{2}-7 \alpha+6\right) c_{1}^{4}\right|+3\left|\left[c_{2}+(3-2 \alpha) c_{1}^{2}\right]^{2}\right|\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4\left|c_{3}\right|\left|c_{1}\right|+4(5-3 \alpha)\left|c_{1}^{2}\right|\left|c_{2}\right|+4\left(2 \alpha^{2}-7 \alpha+6\right)\left|c_{1}^{4}\right|+ \\
3\left|c_{2}^{2}+2(3-2 \alpha) c_{2} c_{1}^{2}+(3-2 \alpha)^{2} c_{1}^{4}\right|
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4\left|c_{3}\right|\left|c_{1}\right|+4(5-3 \alpha)\left|c_{1}^{2}\right|\left|c_{2}\right|+4\left(2 \alpha^{2}-7 \alpha+6\right)\left|c_{1}^{4}\right|+3\left|c_{2}^{2}\right|+ \\
(18-12 \alpha)\left|c_{1}^{2}\right|\left|c_{2}\right|+3(3-2 \alpha)^{2}\left|c_{1}^{4}\right|
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{4\left|c_{3}\right|\left|c_{1}\right|+(38-24 \alpha)\left|c_{1}^{2}\right|\left|c_{2}\right|+\left(20 \alpha^{2}-64 \alpha+51\right)\left|c_{1}^{4}\right|+3\left|c_{2}^{2}\right|\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4 c_{1}\left\{1-c_{1}^{2}-\frac{\left|c_{2}\right|^{2}}{1+c_{1}}\right\}+(38-24 \alpha)\left(1-c_{1}^{2}\right) c_{1}^{2}+ \\
\left(20 \alpha^{2}-64 \alpha+51\right) c_{1}^{4}+3\left|c_{2}^{2}\right|
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4 c_{1}\left(1-c_{1}^{2}\right)+\left(\frac{3-c_{1}}{1+c_{1}}\right)\left|c_{2}\right|^{2}+(38-24 \alpha)\left(1-c_{1}^{2}\right) c_{1}^{2}+ \\
\left(20 \alpha^{2}-64 \alpha+51\right) c_{1}^{4}
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4 c_{1}\left(1-c_{1}^{2}\right)+\left(\frac{3-c_{1}}{1+c_{1}}\right)\left(1-c_{1}^{2}\right)^{2}+ \\
(38-24 \alpha) c_{1}^{2}-(38-24 \alpha) c_{1}^{4}+\left(20 \alpha^{2}-64 \alpha+51\right) c_{1}^{4}
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\begin{array}{l}
4 c_{1}\left(1-c_{1}^{2}\right)+\left(\frac{3-c_{1}}{1+c_{1}}\right)\left(1-c_{1}^{2}\right)\left(1+c_{1}\right)\left(1-c_{1}\right)+ \\
(38-24 \alpha) c_{1}^{2}+\left(20 \alpha^{2}-40 \alpha+13\right) c_{1}^{4}
\end{array}\right\} \Rightarrow \\
& \left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}}{3(1+\lambda)^{2 n}}\left\{\left(20 \alpha^{2}-40 \alpha+12\right) c_{1}^{4}+(36-24 \alpha) c_{1}^{2}+3\right\}
\end{aligned}
$$

Let $\psi\left(c_{1}\right)=\left(20 \alpha^{2}-40 \alpha+12\right) c_{1}^{4}+(36-24 \alpha) c_{1}^{2}+3$. For convenience, saying $A=20 \alpha^{2}-40 \alpha+12$ and $B=36-24 \alpha$ then $\psi\left(c_{1}\right)$ takes the form $\psi\left(c_{1}\right)=$ $A c_{1}^{4}+B c_{1}^{2}+3$.

If the derivative is taken and set to zero, the followings are obtained.
$\psi^{\prime}\left(c_{1}\right)=4 A c_{1}^{3}+2 B c_{1} \Rightarrow 2 c_{1}\left(2 A c_{1}^{2}+B\right)=0 ; c_{1}=0$ and $2 A c_{1}^{2}+B=0 \Rightarrow \quad c_{1}^{2}=-\frac{B}{2 A}$
Since, $0 \leq \alpha<1$ and $B=36-24 \alpha>0$ then $-B<0$. From the inequality $c_{1}^{2}=$ $-\frac{B}{2 A}$, having two distinct real roots is possible for the case $A=20 \alpha^{2}-40 \alpha+12<0$. That is, since $A<0$ while $1-\frac{\sqrt{10}}{5}<\alpha<1$, there exist two distinct real roots such that $c_{1}=\mp \sqrt{-\frac{B}{2 A}}$. Otherwise, that is since $A>0$ while $0 \leq \alpha<1-\frac{\sqrt{10}}{5}$ there is no real number satisfying the condition $c_{1}^{2}=-\frac{B}{2 A}$. Accordingly, the following table can be organized.

Considering the table, the maximum value of the $\psi\left(c_{1}\right)$

$$
\psi\left(c_{1}\right)=\left(20 \alpha^{2}-40 \alpha+12\right) c_{1}^{4}+(36-24 \alpha) c_{1}^{2}+3
$$

will be

$$
\psi(1)=20 \alpha^{2}-64 \alpha+51
$$

Thus, $\left|H_{2,2}(f)\right|$ is obtained as follows

$$
\left|H_{2,2}(f)\right| \leq \frac{(1-\alpha)^{2}\left(20 \alpha^{2}-64 \alpha+51\right)}{3(1+\lambda)^{2 n}}
$$

CONCLUSIONS: A new subclass of analytic functions of denoted by $S_{(\lambda, n)}^{*}$ has been introduced by means D_{λ}^{n} is a linear operator . we give upper bounds of the
$H_{2,1}(f)$ and $H_{2,2}(f)$ Hankel determinants created from the coefficients of functions belonging to class $S_{(\lambda, n)}^{*}$

References

[1] Ozaki, S., On the theory of multivalent functions, II. Sci.Rep. Tokyo Bunrika Daigaku. Sect. A4, 1941,45-87.
[2] Kargar, R., and Ebadian, A., Ozaki's conditions for general integral operator, Sahand Communications in Mathematical Analysis 5, 1 (2017), 61-67.
[3] Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan 4(1952), 194202.
[4] Sakaguchi, K., A property of convex functions and an application to criteria for univalence., Bull. Nara Univ. Ed. Natur. Sci. 22, 2 (1973), 1-5.
[5] Singh, R., and Singh, S., Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47,2 (1982),309-314.
[6] Pommerenke C., On the coecients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41, 111-122,1966.
[7] Pommerenke C., On the Hankel determinants of univalent functions, Mathematika, 14 108112,1967.
[8] A. Janteng, S.A. Halim and M.Darus, Coefficient inequality for a function whose derivative has a positive real part, J.Inequal. Pure Appl.Math., 7,(2006),1-5.
[9] A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J.Math.Anal.,1,(2007),619-625.
[10] K.O.Babalola, On $H_{3,1}(f)$ Hankel determinants for some classes of univalent functions, Inequality theory and applications, vol. 6, (2010), pp. 1-7.
[11] S.Altınkaya, S. Yalçın, Third Hankel determinant for Bazilevic functions. Adv. Math., 5, (2016), 91-96.
[12] D. Bansal, S. Maharana, J.K. Prajapat, Third order Hankel Determinant for certain univalent functions. J. Korean Math. Soc. , 52, (2015),1139-1148.
[13] D.V. Krishna, B.Venkateswarlu, T.RamReddy, Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc., 34, (2015), 121-127.
[14] M. Raza, S.N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl.,(2013), 412.
[15] G. Shanmugam, B.A. Stephen, K.O. Babalola, Third Hankel determinant for α starlike functions. Gulf J. Math. , 2, (2014),107-113.
[16] Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math., 14, 19, 2017.
[17] B.Kowalczyk, A. Lecko, Y.J. Sim,The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc., 97,(2018), 435-445.
[18] A. Lecko, Y.J. Sim, B. Smiarowska,The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory, (2018), 1-8.
[19] M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math., 17, (2019),16151630.
[20] L. Shi, I. Ali, M. Arif ,N.E. Cho, S.Hussain and H. Khan, A Study of Third Hankel Determinant Problem for Certain Subfamilies of Analytic Functions Involving Cardioid Domain, Mathematics, 7, (2019), 418.
[21] P.Zaprawa, Hankel Determinant for Univalent Functions Related to the Exponential Function, symmetry, 11, 1211, (2019).
[22] Gr.Åt. Salagean, Subclasses of Univalent Functions, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin, (1983), pp. 362-372.
[23] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operatör, Indian J. Math. Math. Sci. 25-28, (2004), pp.1429-1436.
[24] I.O. Oros, G. Oros, On a class of univalent functions defined by a generalized Salagean operator. Complex Variables and Elliptic Equations, September Vol.53, No.9,(2008), 869877.
[25] Bieberbach,L."Über die Koeffizienten derjenigen Pottenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln", Sitzungsberichte Preussische Akademie der Wissenschaften, 138: pp. 940-955, (1916).
[26] De-Branges,L. 'A proof of the Beiberbach conjecture', Acta Math.,154:137-152, (1985).
[27] Cho N.E., Kumar V., Kumar S.S., Ravichandran V., Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45, 213-232,2019.
[28] S. Verma, R. Kumar, G. Murugusundaramoorthy, Upper bound for third Hankel determinant of a class of analytic functions, TWWS J. App. and Eng. Math.V.13, N.4, (2023), pp.14721480.
[29] D. Breaz, A.Cataş, L.I.Cotırla, On the upper bound of the third Hankeldeterminant for certain class of analytic functions with exponential function, An. Şt. ale Univ. Ovidius, Constanta, Vol. 30(1), (2022), 75-89.

DEPARTMENT OF MATHEMATICS ,FACULTY OF SCIENCE, KYRGYZ-TURKISH MANAS UNIVERSITY; BISHKEK,KYRGYZSTAN

E-mail address: muhammet.kamali@manas.edu.kg

[^0]: 2010 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Analytic and univalent functions; Coefficient estimates; Hankel Determinant; Starlike functions; Convex function.
 © 2024 Ilirias Research Institute, Prishtinë, Kosovë.
 Submitted April 30, 2023. Accepted for publication May 28, 2024. Published June 5, 2024.
 Communicated by D. Breaz.

