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ON UPPER BOUNDS OF H,,(f) AND H,,(f) HANKEL
DETERMINANTS FOR A SUBCLASS OF ANALYTIC
FUNCTIONS

MUHAMMET KAMALI

ABSTRACT. In this paper, we give upper bounds of the Hankel determinants

H 1(f) and Ho 2(f) for the classes S(*A,n)’ where f is analytic in the open unit

disk A = {z € C: |z| < 1} and normalized so that f(z) = z+a22% +azz3+...

1. INTRODUCTION

Let A be the collection of functions of the form

f(2) :z—i—ianz"7 z€A (1.1)
n=2

which are analytic in the open unit disk A = {z € C : |z| < 1} and let S denote
the subclass of A consisting of functions which are univalent in A.

With a view to recalling the principal of subordination between analytic func-
tions, let f(z) and g(z) be analytic functions in A. Then we say that the function
f(2) is subordinate to g(z) in A, if there exits a Schwarz function w(z), analytic in
A with

w(0) =0and |w(z)| <1, (z€A)

such that f(z) = g(w(z)). We denote this subordination by f(z) < g(z).
If g is a univalent function in A, then

f(z) < g(2) & f(0) = g(0) and f(A) C g(A).

The famous coefficient conjucture Beiberbach conjucture for the functions f € S
of the form (1.1) was first presented by Beiberbach [25] in 1916 and proven by
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de-Branges [26] in 1985. In between the years 1916 and 1985, many mathemati-
cians worked to prove Beiberbach’s conjucture. Consequently, they defined several
subclasses of S connected with different image domains.

Among these, the families S*, C' and K of starlike functions and convex functions
respectively, are the most fundamental subclasses of S and have a nice geometric
interpretation. These families are defined as follows:

. ) L4z
S _{feS. 15 <1_Z,( eE)}

B _ zf"(z) 14z B
C{f65.1+ 702 <1_Z,( eE)}

A function f € A is said to be starlike of order o, 0 < a < 1, if and only if

2f'(2)
Re( ) ) >a (z€A).
We denote this class by S*(«). If @ = 0, then $*(0) = S* is the well-known class
of starlike functions.
By C(a),—% < a < 1, we denote the class Ozaki close-to-convex of functions
f €A for

21(2)
f'(z)
The special case of this class, when o = —1/2 was introduced by Ozaki in 1941
[1] and it is a subclass of the class of close-to-convex functions. This, general form
of the class, was introduced [2] by Kargar and Ebadian. We note that for « = 0 we
have the class of convex functions.
Similarly, by p(«),0 < a <1, we denote the class of functions f € A for which

Re<1—|— >>a (z € A).

Re(l-l—zf”(z)) <1+%2 (zeA)

f'(z) 2

Ozaki [I] introduced the class p(1) and proved that functions in (1) are univa-
lent in the unit disk. Later, Umezawa [3], Sakaguchi [4] and R.Singh and S.Singh
[5] showed, respectively, that functions in p(1) are convex in one direction, close-to-
convex and starlike.

In the 1960s Pommerenke [6],[7] defined the Hankel determinant Hy ,(f) for a
given f of the form (1.1) f as follows

an, An41 - An+4q—1
An+1 an42 An4q
Hon(f) = : : . : (1.2)
On+q—1 Ont+q ' Ont2¢-2

where n,q € N={1,2,3,...}. In particular,

ayp a2

as az = ag — a% is Hg)g(f) =

Hyq(f) =

as Q.
3 = Q204 — a%.
a3 Qa4
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The studies on Hankel determinants are concentrated on estimating Hs o(f) and
Hs 1 (f) for different subclasses of S. The absolute sharp bounds of the functional
Hy 5(f) were found in [§],[9] for each of the families S*,C. In [9], Janteng et al.
proved that |Ha2(f)] < 1 for S* and |Ha»(f)| < § for K, where S* and K are
very well known classes of starlike and convex functions. The estimation of the
determinant |Hs 1(f)| is very hard as compared to deriving the bound of |Hs 2(f)].
The paper on |Hs 1(f)| was given in 2010 by Babalola[I0], in which he obtained the
upper bound of Hs 1(f) for the families of S*, C. Later on, many researchers pub-
lished their work regarding |H3 1(f)| for different subclasses of univalent functions.
For additional details see[I1],[15]. In 2017, Zaprawa [I6] improved the results of
Babalola. In 2018, Kowalczyk et al.[I7] and Lecko et al.[I8] obtained the sharp
inequalities:

Nl

[Hs,1(f) and  [Hza(f)| <

< 5

35

for the recognizable families K and S* (%), respectively, where the symbol S* (%)
stands for the family of starlike functions of order 3. Arif M. et al.[I9] obtained
the upper bound of |Hs1(f)| for the subclasses S, ,Csin and Ry, in in 2019 .
In 2019, Shi L. et al.[20] investigated the estimate of |Hs31(f)| for the subclasses
Sors Cear and Req, of analytic functions connected with the cardioid domain. In
2019, Zaprawa [21] studied the Hankel determinant for univalent functions related
to the exponential function. Additionally, in recent years, S.Verma et al. [28] and
D.Breaz et al. [29] have worked on the upper bounds of Hankel determinants.

For f e A,ine N={0,1,2,,3,...}, the operator D™ f is defined by D" : A — A
2]

D°f(z) = f(z) D""'f(2) =z[D"f(2)]',z € E.

IffeA f(z) =24+ peparz®, then D"f(z) =2+ jo,k™arz®, z€E.
Let n € N={0,1,2,3,...} and A > 0. We let DY, as denoted in [23], be the
operator defined by;

D : A — A
DY f(2) = f(2).
Dy f(2) = (1= N)D3f(2) + Az (DS f(2))" = (1= N f(2) + Azf'(2).

Dyt f(2) = (1= ND3f(2) + Az (D3 f(2) -

We observe that D7 is a linear operator and for f(z) = z+ Y 7o, ax2z"®, we have
24]

DRf(z) =2+ Y [14+A(k— )] ap2*
k=2

Now, we define a subclass of analytic functions as follows:



HANKEL DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS 33

Definition 1.1. A function f € A is said to be starlike of order «, for 0 < a <1,
if and only if

NHCUC
R { Dy () }> (z€8).

We denote this class by S{y (). Ifn, A =0, then S{, ) (0) = S*(a) is the well
-known class of starlike functions.

2. SOME INEQUALITIES AND MAIN RESULTS

For the function 9(2) = c12 + c22% + ¢32% +.... (with |[¢(2)] < 1,2 € A ) the
next relations is valid (for example [7], expression (13) on page 128 ):

o] < 1. (2.1)
leo] < 1—|ea). 2.2)
2 __ 9 2\ 2 2
‘63 (1 —|eq] ) —&—0162‘ < (1 — e ) —leo|”. (2.3)

From (2.3]), we can write

2 _ 2 2\ | — 2 2\? 2
‘03 (1 —|eq] )‘ — || < ’03 (1 — |ea] ) +cicy| < (1 — lea] ) —lea|” =
2
‘03 (1 - \cl|2)‘ — |adg| < (1 - |cl|2> — e’ =
2
e (1=1eaP) | < (1= 1er?)” = leof® + el 3] =

2
(1=1al)” = leaf* + Jexl | 3|

(e

les| <

2
02|
el <1—|e 2 _lol” 2.4
| 3| = | 1| (1+|Cl|) ( )
Let 0 < ¢y < 1. In this case, since 0 < ¢ < 1, from (2.4)) is written
2
c
<l—¢2— —2. 2.5
el £1-cf - T2 (25)

Let’s take ¢y = x and ¢y = y to get the maksimum value of the right side of

(2.5). Let’s take

Let’s calculate the maximum value of the bivariate function
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_ y?
Pal:y) = 2z +2g/1+:v)2 =x=0,y=0
goy(x,y) = T ({+a)
292 2 2y
xTrxr b - _2 - 77 b - _77 X b -
Pz (2,Y) 0+ Pyy(2,y) T y(7,9) 0+ a2

According to the values of the second-order partial derivatives at the point (0, 0),
the following inequalities are written as

[024(0,0)]% = 022(0,0)0,,(0,0) = =4 <0 and  ©,,(0,0) = -2 < 0

then the point (0,0) is a maximum of ¢(z,y) and

max p(z,y) = 1.
So,

jos] < 1 (2.6)
is obtained.

Theorem 2.1. Let f(2) = 2 +az2? +azz® + ... belongs to the class Sh w(@),0 <
a < 1. Then we have the coefficients estimation as follows.

21— )
|a2| < ma |a3| <

Proof. From the definition of the class SE‘/\’H), we have

(1-a)(3-2a) 21— a) (202 = T+ 7)
Qr2nn o = 3(1+3\)"

2(DRf) _ g g L)
Dife) T TG

where 1) is analytic in A with ¢(0) =0 and |¢(2)| < 1,z € A.
Let ¥(2) = c12 + 22?2 + c32% + .. .. From ({2.7)), we have

=1+42(1—a){¢(2) +¥*(2) +¥*(z) +...}
(2.7)

2(DYf(2) 2421+ A)"a2z? 4 3(1+20)"azz® + 4(1 + 3\)"aszt + ...
D7 f(z) 24+ (14 N)"a222 4+ (1 +2X)"az23 + (1 + 3\)"agzt + . ..
L+ (1+ M) "azz + [2(1+2))"az — (1 + A)*"a3] 2°
[3(1+3XN)"as — 3(1 +2X)"(1 4+ A)asas + (1 + A)*"a3] 2*
. (2.8)

+ o+

and

1+2(1— ) {¢(2) +¥%(z) + ¥ (2) + ...}
=14+2(1—a){ciz+ (c2+¢}) 2>+ (es + 2c102 + 1) 2° + ...} (2.9)
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From (2.8)) and (2.9), comparing the coefficients on z, 22, 2% in (2.7) and doing

necessary calculations, finally we obtain
2(1 — a)y

= —-——— 2-1
a2 (1 T )\)n ( O)
(1—a){c+ (3—2a)t}
= . 1
s (1+2))" (2.11)
2(1 —
ay = 3(1(_’_323” {es+ (5—3a)cica + (20° — Ta+6) ¢} } . (2.12)
If (2.1)) is substituted in (2.10), we write

2(1 —a)e|  2(1—a) 2(1 — )
= —_ 2.13
a2 u+Aw = = aae (213)

and if (2.2)) is substituted is in (2.11]), we also write

Q) {02 +(3- 20[)0?}
(T+2)\)"

(1-
(1+2A

jas| = [{cz + (3~ 2a)ci}|

(1

m{|02|+ 3 20{ ’C%|}

(1( ié))n {1f\cl|2+(3—2a) |C1|2}
(1-a)
2X)
(

S o)
(1 =a)(3—2a)
(I42)\)"

By means of the similar operations we can obtain an upper bound for |a4| as
follows,

21—«
ay = m {03 + (5 . 3&)6162 + (20[2 —Ta + 6) C:f} =
2(1 -«
las| = m{03+(5—3a)clcg+ (2042—704—&—6) cil)’} =
2(1
las| = (1(—1—3/\ les + (5 — 3a)cic + (202 — Ta +6) ¢} =
2(1
las| < m“ es| + (5 —3a) |er| |ea| + (204 —7a—|—6) ’C:{)‘}
2(1
< mﬂ es|+ (5 —3a)cr (1—¢}) + (202 = Ta+6) c}} =
2(1
<W{1+ 5 3&) (20[2—4Oé+1)}:>
21— a) (202 = T+ 7)
|as| < .

3(1+3\)"
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Theorem 2.2. Let f(2) = 2+ as2? +azz® + ... belongs to the class S n)(a), 0<

a < 1. Then we have next sharp estimation:

|H2,1(f)<(1—a){ 3 4(1—a>}< (1 — a)(7 — 6a)

T2 T I 1+ 20"

Proof. From the definition of Hankel determinant has the form of Hy 1 (f) = as—a3.

2

In this definition by using (2.10) and (2.11)) and taking module Hy 1 (f) is written

as

(1 -a){ert (3-20)3) {20 o } N

Hzi(f) = a3 — a3 = (I+20"

-« —a)?
|Ha1 (f)] = |ag — a3| < M {lea] + (3 —2a) |eF]} + M |i| =
1—a 5 9 4(1—-a)? |,
Haa(] < g s (1= I+ 3 20) 1} + o ] =
Haa (D) < g (120 = )]} + T .

Thus, from the (2.1))

(1-a)3—-2a) 4(1-a)?
(142x)n (1+X)2m

[H21 ()] <

is obtained. Taking into account the following inequality

1 1

finally, it also can be written as

1-a)3-2a) 4(1—-a)® (1-a)(7-6a)

|Ho 1 (f)] < (1+2\)" + (1+2\)" - (I+2))"

O

Theorem 2.3. Let f(2) = 2z + agz® + a3z + ... belongs to the class Sty (@), 0 <

a < 1. Then we have next sharp estimation:

(1 —a)? (2002 — 64a + 51)

|Ha2(f)| < 301+ A2

Proof. From the definition of Hankel determinant has the form of Hs o(f) = asaq —

a?. In this definition by using (2.10)), (2.11) and (2.12)) and taking module Hs »(f)

is written as
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Ha o (f) = {2“ —a)er } 21— )

(T+X)™ | 3(1+3\)"
@) {cz 4+ (3 = 2a)c} } ?

{03 + (5 —3a)cien + (2042 —Ta+ 6) Cf} -

NG
4(1 — a)?
- 3(1+E\1)"(13r3)\ {eser + (5 = 3a)cfes + (207 — Ta £ 6) i}
_ m {ea+ (3 - 204)0%} =
—« 2
Haalf)] = o)

T30+ M1+ 30"

leser + (5 = 3a)cier + (20° — Tar+ 6) cf | +

W {e2+ (3= 20)ch)’

Taking into account the following inequality
1 1 1

1+ A<14+22<1+3X=> < <
- - (T43X) — (142N — (1+XN)

finally, it also can be written as

1 2
|Hoo(f)| < 321 in% {4 |eser + (5 — 3a)cies + (20% — T+ 6) cf| + 3 ‘ [c2+ (3 — za)cgf’} =
(1=0a)® | 4dlesl|er] +4(5 —3a) || |ea| +4 (202 — Ta +6) |ct| +
Haao(f)] < 31+ 02 | 3|3 +203 - 204)0201 + (3 — 20)%c =
(1=0a)® [ 4fesl]er| +4(5 - 3a) yc§\|(:2|+4(2a — Ta+6) |cf| +3|c3|+
|Hao(f)| <
: 3(1+ A2 | (18 —12a) [} 2| + 3(3 — 2a)? |t
1 2
|Hoo(f)| < 321 Jf;;n {4]es||e1] + (38 — 24a) |cF | |ea| + (200 — 64ar + 51) |cf| + 33|} =
(1-0a)® | 4e 1 —c? - leal” } + (38— 24a) (1 —cF) 3+
H. 14+cy =
[H2(1)] < 3(1+ )2 (2 a — 64a + 51) ci+3 ’c2|
(1=a) [ de(1-c})+ 3 ) Jea)® + (38 — 24a) (1 - 3) &3+
H 1+C =
o2l = 5y (2002 — 64+ 51) ¢
ey 2
[Ha2(f)] < (A=) [ e (1) (:1))*701) (1—cf)"+ =
’ 3L+ 020 | (38 — 24a)c? — (38 — 24a)c! + (2002 — 64a + 51) ¢t
‘H22(f)| ( )2 4c; 1*61 (‘i;21> (1701) (1+Cl)(1701)+ N
’ 31+ A% | (38— 240)? + (200 — 40a + 13) ¢t
(1-a)?
|Hao(f)] < RSV {(200” — 40a + 12) cf + (36 — 24a)c] + 3}
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-
G -5 0 &
Gy - - (I3+ + ++
24C? +B
- Ot + + ——
A<O
2AC? +B
+ + + + ++
A>0
C,(2AC} +B
1( 1 ) S D—&- C + sk i
A<O0
C,(2AC?} +B
1( 1 ) B _ C + 8 4+
A>0
TN NI

Let ¢ (c1)

Ac} + Be? + 3.
If the derivative is taken and set to zero, the followings are obtained.

V' (c1) = 4Ac} + 2Bey = 2¢; (2Ac] + B) = 0;¢; =0 and 24¢f + B =0 =

C

2 _
I =

(2002 — 40cr + 12) ¢} + (36 — 24a)c} + 3. For convenience, saying
A = 2002 — 40 + 12 and B = 36 — 24« then 1 (c1) takes the form 1 (c;)

B
24

Since, 0 < a < 1 and B = 36 — 24a > 0 then —B < 0. From the inequality ¢ =

B

—54, having two distinct real roots is possible for the case A = 2002 —40a+12 < 0.

That is, since A < 0 while 1 — @ < a < 1, there exist two distinct real roots such

that ¢ = F —%. Otherwise, that is since A >0 while 0 < a <1 — @ there is
no real number satisfying the condition ¢? = f%. Accordingly, the following table

can be organized.
Considering the table, the maximum value of the ) (¢1)

will be

¥ (c1) = (200® — 40a + 12) ¢ + (36 — 24a)c] + 3.

(1) = 200 — 64a + 51

Thus, |Ha2(f)| is obtained as follows

|[Ha2(f)] <

(1 —a)? (2002 — 64a + 51)

3(1 1 A)2n

O

CONCLUSIONS: A new subclass of analytic functions of denoted by S&n)
has been introduced by means DY is a linear operator . we give upper bounds of the
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H,1(f) and Hs 2(f) Hankel determinants created from the coefficients of functions
belonging to class SE‘/\ )

(1
2]
(3]
[4]
(5]
(6]
(7
(8]
(9]
[10]
(11]
(12]
(13]
(14]
[15]
[16]
[17]
(18]

(19]

20]

(21]
(22]
23]

24]
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