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ON UPPER BOUNDS OF H2,1(f) AND H2,2(f) HANKEL

DETERMINANTS FOR A SUBCLASS OF ANALYTIC

FUNCTIONS

MUHAMMET KAMALI

Abstract. In this paper, we give upper bounds of the Hankel determinants

H2,1(f) and H2,2(f) for the classes S∗
(λ,n)

, where f is analytic in the open unit

disk ∆ = {z ∈ C : |z| < 1} and normalized so that f(z) = z+a2z2 +a3z3 + . . .

1. INTRODUCTION

Let A be the collection of functions of the form

f(z) = z +

∞∑
n=2

anz
n, z ∈ ∆ (1.1)

which are analytic in the open unit disk ∆ = {z ∈ C : |z| < 1} and let S denote
the subclass of A consisting of functions which are univalent in ∆.

With a view to recalling the principal of subordination between analytic func-
tions, let f(z) and g(z) be analytic functions in ∆. Then we say that the function
f(z) is subordinate to g(z) in ∆, if there exits a Schwarz function w(z), analytic in
∆ with

w(0) = 0 and |w(z)| < 1, (z ∈ ∆)

such that f(z) = g(w(z)). We denote this subordination by f(z) ≺ g(z).
If g is a univalent function in ∆, then

f(z) ≺ g(z)⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

The famous coefficient conjucture Beiberbach conjucture for the functions f ∈ S
of the form (1.1) was first presented by Beiberbach [25] in 1916 and proven by
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de-Branges [26] in 1985. In between the years 1916 and 1985, many mathemati-
cians worked to prove Beiberbach’s conjucture. Consequently, they defined several
subclasses of S connected with different image domains.

Among these, the families S∗, C and K of starlike functions and convex functions
respectively, are the most fundamental subclasses of S and have a nice geometric
interpretation. These families are defined as follows:

S∗ =

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + z

1− z
, (z ∈ E)

}
C =

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z
, (z ∈ E)

}
A function f ∈ A is said to be starlike of order α, 0 ≤ α < 1, if and only if

Re

(
zf ′(z)

f(z)

)
> α (z ∈ ∆).

We denote this class by S∗(α). If α = 0, then S∗(0) = S∗ is the well-known class
of starlike functions.

By C(α),− 1
2 ≤ α < 1, we denote the class Ozaki close-to-convex of functions

f ∈ A for

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ ∆).

The special case of this class, when α = −1/2 was introduced by Ozaki in 1941
[1] and it is a subclass of the class of close-to-convex functions. This, general form
of the class, was introduced [2] by Kargar and Ebadian. We note that for α = 0 we
have the class of convex functions.

Similarly, by ℘(α), 0 < α ≤ 1, we denote the class of functions f ∈ A for which

Re

(
1 +

zf ′′(z)

f ′(z)

)
< 1 +

α

2
(z ∈ ∆)

Ozaki [1] introduced the class ℘(1) and proved that functions in ℘(1) are univa-
lent in the unit disk. Later, Umezawa [3], Sakaguchi [4] and R.Singh and S.Singh
[5] showed, respectively, that functions in ℘(1) are convex in one direction, close-to-
convex and starlike.

In the 1960s Pommerenke [6],[7] defined the Hankel determinant Hq,n(f) for a
given f of the form (1.1) f as follows

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
... · · ·

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ . (1.2)

where n, q ∈ N = {1, 2, 3, . . .}. In particular,

H2,1(f) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = a3 − a22 is H2,2(f) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.
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The studies on Hankel determinants are concentrated on estimating H2,2(f) and
H3,1(f) for different subclasses of S. The absolute sharp bounds of the functional
H2,2(f) were found in [8],[9] for each of the families S∗, C. In [9], Janteng et al.
proved that |H2,2(f)| ≤ 1 for S∗ and |H2,2(f)| ≤ 1

8 for K, where S∗ and K are
very well known classes of starlike and convex functions. The estimation of the
determinant |H3,1(f)| is very hard as compared to deriving the bound of |H2,2(f)|.
The paper on |H3,1(f)| was given in 2010 by Babalola[10], in which he obtained the
upper bound of H3,1(f) for the families of S∗, C. Later on, many researchers pub-
lished their work regarding |H3,1(f)| for different subclasses of univalent functions.
For additional details see[11],[15]. In 2017, Zaprawa [16] improved the results of
Babalola. In 2018, Kowalczyk et al.[17] and Lecko et al.[18] obtained the sharp
inequalities:

|H3,1(f)| ≤ 4

35
and |H3,1(f)| ≤ 1

9

for the recognizable families K and S∗
(
1
2

)
, respectively, where the symbol S∗

(
1
2

)
stands for the family of starlike functions of order 1

2 . Arif M. et al.[19] obtained
the upper bound of |H3,1(f)| for the subclasses S∗sin , Csin and Rsin in in 2019 .
In 2019, Shi L. et al.[20] investigated the estimate of |H3,1(f)| for the subclasses
S∗car, Ccar and Rcar of analytic functions connected with the cardioid domain. In
2019, Zaprawa [21] studied the Hankel determinant for univalent functions related
to the exponential function. Additionally, in recent years, S.Verma et al. [28] and
D.Breaz et al. [29] have worked on the upper bounds of Hankel determinants.

For f ∈ A,n ∈ N = {0, 1, 2, , 3, . . .}, the operator Dnf is defined by Dn : A→ A
[22]

D0f(z) = f(z) Dn+1f(z) = z [Dnf(z)]
′
, z ∈ E.

If f ∈ A, f(z) = z +
∑∞
k=2 akz

k, then Dnf(z) = z +
∑∞
k=2 k

nakz
k, z ∈ E.

Let n ∈ N = {0, 1, 2, 3, . . .} and λ ≥ 0. We let Dn
λ , as denoted in [23], be the

operator defined by;

Dn
λ : A→ A.

D0
λf(z) = f(z).

D1
λf(z) = (1− λ)D0

λf(z) + λz
(
D0
λf(z)

)′
= (1− λ)f(z) + λzf ′(z).

· · ·

Dn+1
λ f(z) = (1− λ)Dn

λf(z) + λz (Dn
λf(z))

′
.

We observe that Dn
λ is a linear operator and for f(z) = z +

∑∞
k=2 akz

k, we have
[24]

Dn
λf(z) = z +

∞∑
k=2

[1 + λ(k − 1)]nakz
k

Now, we define a subclass of analytic functions as follows:



HANKEL DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS 33

Definition 1.1. A function f ∈ A is said to be starlike of order α, for 0 ≤ α < 1,
if and only if

Re

[
z (Dn

λf(z))
′

Dn
λf(z)

]
> α (z ∈ ∆).

We denote this class by S∗(λ,n)(α). If n, λ = 0, then S∗(0,0)(0) = S∗(α) is the well

-known class of starlike functions.

2. SOME INEQUALITIES AND MAIN RESULTS

For the function ψ(z) = c1z + c2z
2 + c3z

3 + . . .. (with |ψ(z)| < 1, z ∈ ∆ ) the
next relations is valid (for example [7], expression (13) on page 128 ):

|c1| ≤ 1. (2.1)

|c2| ≤ 1− |c1|2 . (2.2)∣∣∣c3 (1− |c1|2
)

+ c1c
2
2

∣∣∣ ≤ (
1− |c1|2

)2
− |c2|2 . (2.3)

From (2.3), we can write

∣∣∣c3 (1− |c1|2
)

+ c1c
2
2

∣∣∣ ≤ (1− |c1|2
)2
− |c2|2 ⇒∣∣∣c3 (1− |c1|2

)∣∣∣− ∣∣c̄1c22∣∣ ≤ ∣∣∣c3 (1− |c1|2
)

+ c1c
2
2

∣∣∣ ≤ (1− |c1|2
)2
− |c2|2 ⇒∣∣∣c3 (1− |c1|2

)∣∣∣− ∣∣c1c22∣∣ ≤ (1− |c1|2
)2
− |c2|2 ⇒∣∣∣c3 (1− |c1|2

)∣∣∣ ≤ (1− |c1|2
)2
− |c2|2 + |c1|

∣∣c22∣∣⇒
|c3| ≤

(
1− |c1|2

)2
− |c2|2 + |c1|

∣∣c22∣∣∣∣∣(1− |c1|2
)∣∣∣ ⇒

|c3| ≤ 1− |c1|2 −
|c2|2

(1 + |c1|)
(2.4)

Let 0 ≤ c1 ≤ 1. In this case, since 0 ≤ c2 ≤ 1, from (2.4) is written

|c3| ≤ 1− c21 −
c22

1 + c1
. (2.5)

Let’s take c1 = x and c2 = y to get the maksimum value of the right side of
(2.5). Let’s take

ϕ(x, y) = 1− x2 − y2

1 + x
.

Let’s calculate the maximum value of the bivariate function
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ϕx(x, y) = −2x+ y2

(1+x)2

ϕy(x, y) = − 2y
(1+x)

}
⇒ x = 0, y = 0

ϕxx(x, y) = −2− 2y2

(1 + x)3
, ϕyy(x, y) = − 2

(1 + x)
, ϕxy(x, y) =

2y

(1 + x)2

According to the values of the second-order partial derivatives at the point (0, 0),
the following inequalities are written as

[ϕxy(0, 0)]
2 − ϕxx(0, 0)ϕyy(0, 0) = −4 < 0 and ϕxx(0, 0) = −2 < 0

then the point (0, 0) is a maximum of ϕ(x, y) and

maxϕ(x, y) = 1.

So,

|c3| ≤ 1 (2.6)

is obtained.

Theorem 2.1. Let f(z) = z + a2z
2 + a3z

3 + . . . belongs to the class S∗(λ,n)(α), 0 ≤
α < 1. Then we have the coefficients estimation as follows.

|a2| ≤
2(1− α)

(1 + λ)n
, |a3| ≤

(1− α)(3− 2α)

(1 + 2λ)n
, |a4| ≤

2(1− α)
(
2α2 − 7α+ 7

)
3(1 + 3λ)n

Proof. From the definition of the class S∗(λ,n), we have

z (Dn
λf(z))

′

Dn
λf(z)

= α+ (1− α)
1 + ψ(z)

1− ψ(z)
= 1 + 2(1− α)

{
ψ(z) + ψ2(z) + ψ3(z) + . . .

}
(2.7)

where ψ is analytic in ∆ with ψ(0) = 0 and |ψ(z)| < 1, z ∈ ∆.
Let ψ(z) = c1z + c2z

2 + c3z
3 + . . .. From (2.7), we have

z (Dn
λf(z))

′

Dn
λf(z)

=
z + 2(1 + λ)na2z

2 + 3(1 + 2λ)na3z
3 + 4(1 + 3λ)na4z

4 + . . .

z + (1 + λ)na2z2 + (1 + 2λ)na3z3 + (1 + 3λ)na4z4 + . . .

= 1 + (1 + λ)na2z +
[
2(1 + 2λ)na3 − (1 + λ)2na22

]
z2

+
[
3(1 + 3λ)na4 − 3(1 + 2λ)n(1 + λ)na2a3 + (1 + λ)3na32

]
z3

+ · · · (2.8)

and

1 + 2(1− α)
{
ψ(z) + ψ2(z) + ψ3(z) + . . .

}
= 1 + 2(1− α)

{
c1z +

(
c2 + c21

)
z2 +

(
c3 + 2c1c2 + c31

)
z3 + . . .

}
. (2.9)
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From (2.8) and (2.9), comparing the coefficients on z, z2, z3 in (2.7) and doing
necessary calculations, finally we obtain

a2 =
2(1− α)c1
(1 + λ)n

(2.10)

a3 =
(1− α)

{
c2 + (3− 2α)c21

}
(1 + 2λ)n

(2.11)

a4 =
2(1− α)

3(1 + 3λ)n
{
c3 + (5− 3α)c1c2 +

(
2α2 − 7α+ 6

)
c31
}
. (2.12)

If (2.1) is substituted in (2.10), we write

|a2| =
∣∣∣∣2(1− α)c1

(1 + λ)n

∣∣∣∣ =
2(1− α)

(1 + λ)n
|c1| ≤

2(1− α)

(1 + λ)n
. (2.13)

and if (2.2) is substituted is in (2.11), we also write

|a3| =

∣∣∣∣∣ (1− α)
{
c2 + (3− 2α)c21

}
(1 + 2λ)n

∣∣∣∣∣ =
(1− α)

(1 + 2λ)n
∣∣{c2 + (3− 2α)c21

}∣∣
≤ (1− α)

(1 + 2λ)n
{
|c2|+ (3− 2α)

∣∣c21∣∣}
≤ (1− α)

(1 + 2λ)n

{
1− |c1|2 + (3− 2α) |c1|2

}
=

(1− α)

(1 + 2λ)n

{
1 + 2(1− α) |c1|2

}
=

(1− α)(3− 2α)

(1 + 2λ)n
.

By means of the similar operations we can obtain an upper bound for |a4| as
follows,

a4 =
2(1− α)

3(1 + 3λ)n
{
c3 + (5− 3α)c1c2 +

(
2α2 − 7α+ 6

)
c31
}
⇒

|a4| =
∣∣∣∣ 2(1− α)

3(1 + 3λ)n
{
c3 + (5− 3α)c1c2 +

(
2α2 − 7α+ 6

)
c31
}∣∣∣∣⇒

|a4| =
2(1− α)

3(1 + 3λ)n
∣∣c3 + (5− 3α)c1c2 +

(
2α2 − 7α+ 6

)
c31
∣∣⇒

|a4| ≤
2(1− α)

3(1 + 3λ)n
{
|c3|+ (5− 3α) |c1| |c2|+

(
2α2 − 7α+ 6

) ∣∣c31∣∣}
≤ 2(1− α)

3(1 + 3λ)n
{
|c3|+ (5− 3α)c1

(
1− c21

)
+
(
2α2 − 7α+ 6

)
c31
}
⇒

≤ 2(1− α)

3(1 + 3λ)n
{

1 + (5− 3α) +
(
2α2 − 4α+ 1

)}
⇒

|a4| ≤
2(1− α)

(
2α2 − 7α+ 7

)
3(1 + 3λ)n

.

�
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Theorem 2.2. Let f(z) = z + a2z
2 + a3z

3 + . . . belongs to the class S∗(λ,n)(α), 0 ≤
α < 1. Then we have next sharp estimation:

|H2,1(f)| ≤ (1− α)

{
3

(1 + 2λ)n
+

4(1− α)

(1 + λ)2n

}
≤ (1− α)(7− 6α)

(1 + 2λ)n

Proof. From the definition of Hankel determinant has the form of H2,1(f) = a3−a22.
In this definition by using (2.10) and (2.11) and taking module H2,1(f) is written
as

H2,1(f) = a3 − a22 =
(1− α)

{
c2 + (3− 2α)c21

}
(1 + 2λ)n

−
{

2(1− α)c1
(1 + λ)n

}2

⇒

|H2,1(f)| =
∣∣a3 − a22∣∣ ≤ (1− α)

(1 + 2λ)n
{
|c2|+ (3− 2α)

∣∣c21∣∣}+
4(1− α)2

(1 + λ)2n
∣∣c21∣∣⇒

|H2,1(f)| ≤ (1− α)

(1 + 2λ)n
{

1−
∣∣c21∣∣+ (3− 2α)

∣∣c21∣∣}+
4(1− α)2

(1 + λ)2n
∣∣c21∣∣⇒

|H2,1(f)| ≤ (1− α)

(1 + 2λ)n
{

1 + 2(1− α)
∣∣c21∣∣}+

4(1− α)2

(1 + λ)2n
∣∣c21∣∣ .

Thus, from the (2.1)

|H2,1(f)| ≤ (1− α)(3− 2α)

(1 + 2λ)n
+

4(1− α)2

(1 + λ)2n

is obtained. Taking into account the following inequality

(1 + λ)2n ≥ (1 + 2λ)n ⇒ 1

(1 + 2λ)n
≥ 1

(1 + λ)2n

finally, it also can be written as

|H2,1(f)| ≤ (1− α)(3− 2α)

(1 + 2λ)n
+

4(1− α)2

(1 + 2λ)n
=

(1− α)(7− 6α)

(1 + 2λ)n

�

Theorem 2.3. Let f(z) = z + a2z
2 + a3z

3 + . . . belongs to the class S∗(x,n)(α), 0 ≤
α < 1. Then we have next sharp estimation:

|H2,2(f)| ≤
(1− α)2

(
20α2 − 64α+ 51

)
3(1 + λ)2n

.

Proof. From the definition of Hankel determinant has the form of H2,2(f) = a2a4−
a23. In this definition by using (2.10), (2.11) and (2.12) and taking module H2,2(f)
is written as
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H2,2(f) =

{
2(1− α)c1
(1 + λ)n

}
2(1− α)

3(1 + 3λ)n{
c3 + (5− 3α)c1c2 +

(
2α2 − 7α+ 6

)
c31
}
−

[
(1− α)

{
c2 + (3− 2α)c21

}
(1 + 2λ)n

]2
=

4(1− α)2

3(1 + λ)n(1 + 3λ)n
{
c3c1 + (5− 3α)c21c2 +

(
2α2 − 7α+ 6

)
c41
}

− (1− α)2

(1 + 2λ)2n
{
c2 + (3− 2α)c21

}2 ⇒
|H2,2(f)| = 4(1− α)2

3(1 + λ)n(1 + 3λ)n

∣∣c3c1 + (5− 3α)c21c2 +
(
2α2 − 7α+ 6

)
c41
∣∣+

(1− α)2

(1 + 2λ)2n

∣∣∣{c2 + (3− 2α)c21
}2∣∣∣

Taking into account the following inequality

1 + λ ≤ 1 + 2λ ≤ 1 + 3λ⇒ 1

(1 + 3λ)
≤ 1

(1 + 2λ)
≤ 1

(1 + λ)

finally, it also can be written as

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4
∣∣c3c1 + (5− 3α)c21c2 +

(
2α2 − 7α+ 6

)
c41
∣∣+ 3

∣∣∣[c2 + (3− 2α)c21
]2∣∣∣}⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4 |c3| |c1|+ 4(5− 3α)

∣∣c21∣∣ |c2|+ 4
(
2α2 − 7α+ 6

) ∣∣c41∣∣+
3
∣∣c22 + 2(3− 2α)c2c

2
1 + (3− 2α)2c41

∣∣ }
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4 |c3| |c1|+ 4(5− 3α)

∣∣c21∣∣ |c2|+ 4
(
2α2 − 7α+ 6

) ∣∣c41∣∣+ 3
∣∣c22∣∣+

(18− 12α)
∣∣c21∣∣ |c2|+ 3(3− 2α)2

∣∣c41∣∣
}
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n
{

4 |c3| |c1|+ (38− 24α)
∣∣c21∣∣ |c2|+ (20α2 − 64α+ 51

) ∣∣c41∣∣+ 3
∣∣c22∣∣}⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4c1

{
1− c21 −

|c2|2
1+c1

}
+ (38− 24α)

(
1− c21

)
c21+(

20α2 − 64α+ 51
)
c41 + 3

∣∣c22∣∣
}
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4c1
(
1− c21

)
+
(

3−c1
1+c1

)
|c2|2 + (38− 24α)

(
1− c21

)
c21+(

20α2 − 64α+ 51
)
c41

}
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4c1
(
1− c21

)
+
(

3−c1
1+c1

) (
1− c21

)2
+

(38− 24α)c21 − (38− 24α)c41 +
(
20α2 − 64α+ 51

)
c41

}
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n

{
4c1
(
1− c21

)
+
(

3−c1
1+c1

) (
1− c21

)
(1 + c1) (1− c1) +

(38− 24α)c21 +
(
20α2 − 40α+ 13

)
c41

}
⇒

|H2,2(f)| ≤ (1− α)2

3(1 + λ)2n
{(

20α2 − 40α+ 12
)
c41 + (36− 24α)c21 + 3

}
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Let ψ (c1) =
(
20α2 − 40α+ 12

)
c41 + (36 − 24α)c21 + 3. For convenience, saying

A = 20α2 − 40α + 12 and B = 36 − 24α then ψ (c1) takes the form ψ (c1) =
Ac41 +Bc21 + 3.

If the derivative is taken and set to zero, the followings are obtained.

ψ′ (c1) = 4Ac31 + 2Bc1 ⇒ 2c1
(
2Ac21 +B

)
= 0; c1 = 0 and 2Ac21 +B = 0⇒ c21 = − B

2A

Since, 0 ≤ α < 1 and B = 36− 24α > 0 then −B < 0. From the inequality c21 =
− B

2A , having two distinct real roots is possible for the case A = 20α2−40α+12 < 0.

That is, since A < 0 while 1−
√
10
5 < α < 1, there exist two distinct real roots such

that c1 = ∓
√
− B

2A . Otherwise, that is since A > 0 while 0 ≤ α < 1−
√
10
5 there is

no real number satisfying the condition c21 = − B
2A . Accordingly, the following table

can be organized.
Considering the table, the maximum value of the ψ (c1)

ψ (c1) =
(
20α2 − 40α+ 12

)
c41 + (36− 24α)c21 + 3.

will be

ψ(1) = 20α2 − 64α+ 51

Thus, |H2,2(f)| is obtained as follows

|H2,2(f)| ≤
(1− α)2

(
20α2 − 64α+ 51

)
3(1 + λ)2n

.

�

CONCLUSIONS: A new subclass of analytic functions of denoted by S∗(λ,n)
has been introduced by means Dn

λ is a linear operator . we give upper bounds of the



HANKEL DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS 39

H2,1(f) and H2,2(f) Hankel determinants created from the coefficients of functions
belonging to class S∗(λ,n)
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