Journal of Mathematical Analysis ISSN: 2217-3412, URL: www.ilirias.com/jma Volume 15 Issue 3 (2024), Pages 30-40 https://doi.org/10.54379/jma-2024-3-4.

ON UPPER BOUNDS OF $H_{2,1}(f)$ AND $H_{2,2}(f)$ HANKEL DETERMINANTS FOR A SUBCLASS OF ANALYTIC FUNCTIONS

MUHAMMET KAMALI

ABSTRACT. In this paper, we give upper bounds of the Hankel determinants $H_{2,1}(f)$ and $H_{2,2}(f)$ for the classes $S^*_{(\lambda,n)}$, where f is analytic in the open unit disk $\Delta = \{z \in C : |z| < 1\}$ and normalized so that $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$

1. INTRODUCTION

Let A be the collection of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in \Delta$$
(1.1)

which are analytic in the open unit disk $\Delta = \{z \in C : |z| < 1\}$ and let S denote the subclass of A consisting of functions which are univalent in Δ .

With a view to recalling the principal of subordination between analytic functions, let f(z) and g(z) be analytic functions in Δ . Then we say that the function f(z) is subordinate to g(z) in Δ , if there exits a Schwarz function w(z), analytic in Δ with

$$w(0) = 0$$
 and $|w(z)| < 1$, $(z \in \Delta)$

such that f(z) = g(w(z)). We denote this subordination by $f(z) \prec g(z)$. If g is a univalent function in Δ , then

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta).$$

The famous coefficient conjucture Beiberbach conjucture for the functions $f \in S$ of the form (1.1) was first presented by Beiberbach [25] in 1916 and proven by

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Analytic and univalent functions; Coefficient estimates; Hankel Determinant; Starlike functions; Convex function.

^{©2024} Ilirias Research Institute, Prishtinë, Kosovë.

Submitted April 30, 2023. Accepted for publication May 28, 2024. Published June 5, 2024. Communicated by D. Breaz.

de-Branges [26] in 1985. In between the years 1916 and 1985, many mathematicians worked to prove Beiberbach's conjucture. Consequently, they defined several subclasses of S connected with different image domains.

Among these, the families S^* , C and K of starlike functions and convex functions respectively, are the most fundamental subclasses of S and have a nice geometric interpretation. These families are defined as follows:

$$S^* = \left\{ f \in S : \frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z}, (z \in E) \right\}$$
$$C = \left\{ f \in S : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z}, (z \in E) \right\}$$

A function $f \in A$ is said to be starlike of order $\alpha, 0 \leq \alpha < 1$, if and only if

$$Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \Delta).$$

We denote this class by $S^*(\alpha)$. If $\alpha = 0$, then $S^*(0) = S^*$ is the well-known class of starlike functions.

By $C(\alpha), -\frac{1}{2} \leq \alpha < 1$, we denote the class Ozaki close-to-convex of functions $f \in A$ for

$$Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \Delta).$$

The special case of this class, when $\alpha = -1/2$ was introduced by Ozaki in 1941 [1] and it is a subclass of the class of close-to-convex functions. This, general form of the class, was introduced [2] by Kargar and Ebadian. We note that for $\alpha = 0$ we have the class of convex functions.

Similarly, by $\wp(\alpha), 0 < \alpha \leq 1$, we denote the class of functions $f \in A$ for which

$$Re\left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right)<1+\frac{\alpha}{2}\quad(z\in\Delta)$$

Ozaki [1] introduced the class $\wp(1)$ and proved that functions in $\wp(1)$ are univalent in the unit disk. Later, Umezawa [3], Sakaguchi [4] and R.Singh and S.Singh [5] showed, respectively, that functions in $\wp(1)$ are convex in one direction, close-to-convex and starlike.

In the 1960s Pommerenke [6],[7] defined the Hankel determinant $H_{q,n}(f)$ for a given f of the form (1.1) f as follows

$$H_{q,n}(f) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix}.$$
 (1.2)

where $n, q \in \mathbb{N} = \{1, 2, 3, \ldots\}$. In particular,

$$H_{2,1}(f) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_3 - a_2^2 \quad \text{is} \quad H_{2,2}(f) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2 a_4 - a_3^2.$$

M. KAMALI

The studies on Hankel determinants are concentrated on estimating $H_{2,2}(f)$ and $H_{3,1}(f)$ for different subclasses of S. The absolute sharp bounds of the functional $H_{2,2}(f)$ were found in [8],[9] for each of the families S^*, C . In [9], Janteng et al. proved that $|H_{2,2}(f)| \leq 1$ for S^* and $|H_{2,2}(f)| \leq \frac{1}{8}$ for K, where S^* and K are very well known classes of starlike and convex functions. The estimation of the determinant $|H_{3,1}(f)|$ is very hard as compared to deriving the bound of $|H_{2,2}(f)|$. The paper on $|H_{3,1}(f)|$ was given in 2010 by Babalola[10], in which he obtained the upper bound of $H_{3,1}(f)$ for the families of S^*, C . Later on, many researchers published their work regarding $|H_{3,1}(f)|$ for different subclasses of univalent functions. For additional details see[11],[15]. In 2017, Zaprawa [16] improved the results of Babalola. In 2018, Kowalczyk et al.[17] and Lecko et al.[18] obtained the sharp inequalities:

$$|H_{3,1}(f)| \le \frac{4}{35}$$
 and $|H_{3,1}(f)| \le \frac{1}{9}$

for the recognizable families K and $S^*\left(\frac{1}{2}\right)$, respectively, where the symbol $S^*\left(\frac{1}{2}\right)$ stands for the family of starlike functions of order $\frac{1}{2}$. Arif M. et al.[19] obtained the upper bound of $|H_{3,1}(f)|$ for the subclasses S_{\sin}^* , C_{\sin} and R_{\sin} in in 2019. In 2019, Shi L. et al.[20] investigated the estimate of $|H_{3,1}(f)|$ for the subclasses S_{car}^* , C_{car} and R_{car} of analytic functions connected with the cardioid domain. In 2019, Zaprawa [21] studied the Hankel determinant for univalent functions related to the exponential function. Additionally, in recent years, S.Verma et al. [28] and D.Breaz et al. [29] have worked on the upper bounds of Hankel determinants.

For $f \in A, n \in \mathbb{N} = \{0, 1, 2, 3, ...\}$, the operator $D^n f$ is defined by $D^n : A \to A$ [22]

$$D^0 f(z) = f(z)$$
 $D^{n+1} f(z) = z [D^n f(z)]', z \in E.$

If $f \in A$, $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, then $D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k$, $z \in E$. Let $n \in \mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\lambda \ge 0$. We let D^n_{λ} , as denoted in [23], be the operator defined by;

$$D^n_{\lambda} : A \to A.$$

$$D^0_{\lambda} f(z) = f(z).$$

$$D^1_{\lambda} f(z) = (1 - \lambda) D^0_{\lambda} f(z) + \lambda z \left(D^0_{\lambda} f(z) \right)' = (1 - \lambda) f(z) + \lambda z f'(z).$$

...

$$D_{\lambda}^{n+1}f(z) = (1-\lambda)D_{\lambda}^{n}f(z) + \lambda z \left(D_{\lambda}^{n}f(z)\right)'.$$

We observe that D_{λ}^{n} is a linear operator and for $f(z) = z + \sum_{k=2}^{\infty} a_{k} z^{k}$, we have [24]

$$D_{\lambda}^{n}f(z) = z + \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^{n} a_{k} z^{k}$$

Now, we define a subclass of analytic functions as follows:

32

Definition 1.1. A function $f \in A$ is said to be starlike of order α , for $0 \le \alpha < 1$, if and only if

$$Re\left[\frac{z\left(D_{\lambda}^{n}f(z)\right)'}{D_{\lambda}^{n}f(z)}
ight] > \alpha \quad (z \in \Delta).$$

We denote this class by $S^*_{(\lambda,n)}(\alpha)$. If $n, \lambda = 0$, then $S^*_{(0,0)}(0) = S^*(\alpha)$ is the well -known class of starlike functions.

2. SOME INEQUALITIES AND MAIN RESULTS

For the function $\psi(z) = c_1 z + c_2 z^2 + c_3 z^3 + \dots$ (with $|\psi(z)| < 1, z \in \Delta$) the next relations is valid (for example [7], expression (13) on page 128):

$$|c_1| \leq 1. \tag{2.1}$$

$$|c_2| \leq 1 - |c_1|^2$$
. (2.2)

$$\left|c_{3}\left(1-\left|c_{1}\right|^{2}\right)+\overline{c_{1}}c_{2}^{2}\right| \leq \left(1-\left|c_{1}\right|^{2}\right)^{2}-\left|c_{2}\right|^{2}.$$
 (2.3)

From (2.3), we can write

$$\begin{aligned} \left| c_{3} \left(1 - \left| c_{1} \right|^{2} \right) + \overline{c_{1}} c_{2}^{2} \right| &\leq \left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} \Rightarrow \\ \left| c_{3} \left(1 - \left| c_{1} \right|^{2} \right) \right| - \left| \overline{c_{1}} c_{2}^{2} \right| &\leq \left| c_{3} \left(1 - \left| c_{1} \right|^{2} \right) + \overline{c_{1}} c_{2}^{2} \right| &\leq \left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} \Rightarrow \\ \left| c_{3} \left(1 - \left| c_{1} \right|^{2} \right) \right| - \left| \overline{c_{1}} c_{2}^{2} \right| &\leq \left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} \Rightarrow \\ \left| c_{3} \left(1 - \left| c_{1} \right|^{2} \right) \right| &\leq \left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} + \left| \overline{c_{1}} \right| \left| c_{2}^{2} \right| \Rightarrow \\ \left| c_{3} \right| &\leq \frac{\left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} + \left| \overline{c_{1}} \right| \left| c_{2}^{2} \right| \Rightarrow \\ \left| c_{3} \right| &\leq \frac{\left(1 - \left| c_{1} \right|^{2} \right)^{2} - \left| c_{2} \right|^{2} + \left| \overline{c_{1}} \right| \left| c_{2}^{2} \right| \Rightarrow \end{aligned}$$

$$|c_3| \le 1 - |c_1|^2 - \frac{|c_2|^2}{(1+|c_1|)} \tag{2.4}$$

Let $0 \le c_1 \le 1$. In this case, since $0 \le c_2 \le 1$, from (2.4) is written

$$|c_3| \le 1 - c_1^2 - \frac{c_2^2}{1 + c_1}.$$
(2.5)

Let's take $c_1 = x$ and $c_2 = y$ to get the maksimum value of the right side of (2.5). Let's take

$$\varphi(x,y) = 1 - x^2 - \frac{y^2}{1+x}.$$

Let's calculate the maximum value of the bivariate function

$$\begin{cases} \varphi_x(x,y) = -2x + \frac{y^2}{(1+x)^2} \\ \varphi_y(x,y) = -\frac{2y}{(1+x)} \end{cases} \} \Rightarrow x = 0, y = 0 \\ \varphi_{xx}(x,y) = -2 - \frac{2y^2}{(1+x)^3}, \quad \varphi_{yy}(x,y) = -\frac{2}{(1+x)}, \quad \varphi_{xy}(x,y) = \frac{2y}{(1+x)^2} \end{cases}$$

According to the values of the second-order partial derivatives at the point (0,0), the following inequalities are written as

 $[\varphi_{xy}(0,0)]^2 - \varphi_{xx}(0,0)\varphi_{yy}(0,0) = -4 < 0 \quad \text{and} \quad \varphi_{xx}(0,0) = -2 < 0$

then the point (0,0) is a maximum of $\varphi(x,y)$ and

$$\max \varphi(x, y) = 1.$$

So,

$$|c_3| \le 1 \tag{2.6}$$

is obtained.

Theorem 2.1. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ belongs to the class $S^*_{(\lambda,n)}(\alpha), 0 \le \alpha < 1$. Then we have the coefficients estimation as follows.

$$|a_2| \le \frac{2(1-\alpha)}{(1+\lambda)^n}, \quad |a_3| \le \frac{(1-\alpha)(3-2\alpha)}{(1+2\lambda)^n}, \quad |a_4| \le \frac{2(1-\alpha)\left(2\alpha^2 - 7\alpha + 7\right)}{3(1+3\lambda)^n}$$

Proof. From the definition of the class $S^*_{(\lambda,n)}$, we have

$$\frac{z\left(D_{\lambda}^{n}f(z)\right)'}{D_{\lambda}^{n}f(z)} = \alpha + (1-\alpha)\frac{1+\psi(z)}{1-\psi(z)} = 1 + 2(1-\alpha)\left\{\psi(z) + \psi^{2}(z) + \psi^{3}(z) + \ldots\right\}$$
(2.7)

where ψ is analytic in Δ with $\psi(0) = 0$ and $|\psi(z)| < 1, z \in \Delta$. Let $\psi(z) = c_1 z + c_2 z^2 + c_3 z^3 + \ldots$ From (2.7), we have

$$\frac{z(D_{\lambda}^{n}f(z))'}{D_{\lambda}^{n}f(z)} = \frac{z+2(1+\lambda)^{n}a_{2}z^{2}+3(1+2\lambda)^{n}a_{3}z^{3}+4(1+3\lambda)^{n}a_{4}z^{4}+\dots}{z+(1+\lambda)^{n}a_{2}z^{2}+(1+2\lambda)^{n}a_{3}z^{3}+(1+3\lambda)^{n}a_{4}z^{4}+\dots} \\
= 1+(1+\lambda)^{n}a_{2}z+\left[2(1+2\lambda)^{n}a_{3}-(1+\lambda)^{2n}a_{2}^{2}\right]z^{2} \\
+ \left[3(1+3\lambda)^{n}a_{4}-3(1+2\lambda)^{n}(1+\lambda)^{n}a_{2}a_{3}+(1+\lambda)^{3n}a_{3}^{3}\right]z^{3} \\
+ \cdots$$
(2.8)

and

$$1 + 2(1 - \alpha) \left\{ \psi(z) + \psi^{2}(z) + \psi^{3}(z) + \ldots \right\}$$

= 1 + 2(1 - \alpha) \left\{c_{1}z + \left(c_{2} + c_{1}^{2}\right)z^{2} + \left(c_{3} + 2c_{1}c_{2} + c_{1}^{3}\right)z^{3} + \ldots \right\}. (2.9)

From (2.8) and (2.9), comparing the coefficients on z, z^2, z^3 in (2.7) and doing necessary calculations, finally we obtain

$$a_2 = \frac{2(1-\alpha)c_1}{(1+\lambda)^n}$$
(2.10)

$$a_3 = \frac{(1-\alpha)\left\{c_2 + (3-2\alpha)c_1^2\right\}}{(1+2\lambda)^n}$$
(2.11)

$$a_4 = \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ c_3 + (5-3\alpha)c_1c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right\}.$$
 (2.12)

If (2.1) is substituted in (2.10), we write

$$|a_2| = \left| \frac{2(1-\alpha)c_1}{(1+\lambda)^n} \right| = \frac{2(1-\alpha)}{(1+\lambda)^n} |c_1| \le \frac{2(1-\alpha)}{(1+\lambda)^n}.$$
(2.13)

and if (2.2) is substituted is in (2.11), we also write

$$\begin{aligned} |a_3| &= \left| \frac{(1-\alpha) \left\{ c_2 + (3-2\alpha) c_1^2 \right\}}{(1+2\lambda)^n} \right| = \frac{(1-\alpha)}{(1+2\lambda)^n} \left| \left\{ c_2 + (3-2\alpha) c_1^2 \right\} \right| \\ &\leq \frac{(1-\alpha)}{(1+2\lambda)^n} \left\{ |c_2| + (3-2\alpha) |c_1^2| \right\} \\ &\leq \frac{(1-\alpha)}{(1+2\lambda)^n} \left\{ 1 - |c_1|^2 + (3-2\alpha) |c_1|^2 \right\} \\ &= \frac{(1-\alpha)}{(1+2\lambda)^n} \left\{ 1 + 2(1-\alpha) |c_1|^2 \right\} \\ &= \frac{(1-\alpha)(3-2\alpha)}{(1+2\lambda)^n}. \end{aligned}$$

By means of the similar operations we can obtain an upper bound for $|a_4|$ as follows,

$$\begin{aligned} a_4 &= \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ c_3 + (5-3\alpha)c_1c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right\} \Rightarrow \\ |a_4| &= \left| \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ c_3 + (5-3\alpha)c_1c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right\} \right| \Rightarrow \\ |a_4| &= \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left| c_3 + (5-3\alpha)c_1c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right| \Rightarrow \\ |a_4| &\leq \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ |c_3| + (5-3\alpha)|c_1| \left| c_2 \right| + \left(2\alpha^2 - 7\alpha + 6\right)\left| c_1^3 \right| \right\} \\ &\leq \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ |c_3| + (5-3\alpha)c_1\left(1-c_1^2\right) + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right\} \Rightarrow \\ &\leq \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ 1 + (5-3\alpha) + \left(2\alpha^2 - 4\alpha + 1\right) \right\} \Rightarrow \\ |a_4| &\leq \frac{2(1-\alpha)}{3(1+3\lambda)^n} \left\{ 1 + (5-3\alpha) + \left(2\alpha^2 - 4\alpha + 1\right) \right\} \Rightarrow \end{aligned}$$

Theorem 2.2. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ belongs to the class $S^*_{(\lambda,n)}(\alpha), 0 \le \alpha < 1$. Then we have next sharp estimation:

$$|H_{2,1}(f)| \le (1-\alpha) \left\{ \frac{3}{(1+2\lambda)^n} + \frac{4(1-\alpha)}{(1+\lambda)^{2n}} \right\} \le \frac{(1-\alpha)(7-6\alpha)}{(1+2\lambda)^n}$$

Proof. From the definition of Hankel determinant has the form of $H_{2,1}(f) = a_3 - a_2^2$. In this definition by using (2.10) and (2.11) and taking module $H_{2,1}(f)$ is written as

$$\begin{aligned} H_{2,1}(f) &= a_3 - a_2^2 = \frac{(1-\alpha)\left\{c_2 + (3-2\alpha)c_1^2\right\}}{(1+2\lambda)^n} - \left\{\frac{2(1-\alpha)c_1}{(1+\lambda)^n}\right\}^2 \Rightarrow \\ |H_{2,1}(f)| &= \left|a_3 - a_2^2\right| \le \frac{(1-\alpha)}{(1+2\lambda)^n}\left\{|c_2| + (3-2\alpha)\left|c_1^2\right|\right\} + \frac{4(1-\alpha)^2}{(1+\lambda)^{2n}}\left|c_1^2\right| \Rightarrow \\ |H_{2,1}(f)| &\le \frac{(1-\alpha)}{(1+2\lambda)^n}\left\{1 - \left|c_1^2\right| + (3-2\alpha)\left|c_1^2\right|\right\} + \frac{4(1-\alpha)^2}{(1+\lambda)^{2n}}\left|c_1^2\right| \Rightarrow \\ |H_{2,1}(f)| &\le \frac{(1-\alpha)}{(1+2\lambda)^n}\left\{1 + 2(1-\alpha)\left|c_1^2\right|\right\} + \frac{4(1-\alpha)^2}{(1+\lambda)^{2n}}\left|c_1^2\right|.\end{aligned}$$

Thus, from the (2.1)

$$|H_{2,1}(f)| \le \frac{(1-\alpha)(3-2\alpha)}{(1+2\lambda)^n} + \frac{4(1-\alpha)^2}{(1+\lambda)^{2n}}$$

is obtained. Taking into account the following inequality

$$(1+\lambda)^{2n} \ge (1+2\lambda)^n \Rightarrow \frac{1}{(1+2\lambda)^n} \ge \frac{1}{(1+\lambda)^{2n}}$$

finally, it also can be written as

$$|H_{2,1}(f)| \le \frac{(1-\alpha)(3-2\alpha)}{(1+2\lambda)^n} + \frac{4(1-\alpha)^2}{(1+2\lambda)^n} = \frac{(1-\alpha)(7-6\alpha)}{(1+2\lambda)^n}$$

Theorem 2.3. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ belongs to the class $S^*_{(x,n)}(\alpha), 0 \le \alpha < 1$. Then we have next sharp estimation:

$$|H_{2,2}(f)| \le \frac{(1-\alpha)^2 \left(20\alpha^2 - 64\alpha + 51\right)}{3(1+\lambda)^{2n}}.$$

Proof. From the definition of Hankel determinant has the form of $H_{2,2}(f) = a_2a_4 - a_3^2$. In this definition by using (2.10), (2.11) and (2.12) and taking module $H_{2,2}(f)$ is written as

$$\begin{split} H_{2,2}(f) &= \left\{ \frac{2(1-\alpha)c_1}{(1+\lambda)^n} \right\} \frac{2(1-\alpha)}{3(1+3\lambda)^n} \\ \left\{ c_3 + (5-3\alpha)c_1c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^3 \right\} - \left[\frac{(1-\alpha)\left\{c_2 + (3-2\alpha)c_1^2\right\}}{(1+2\lambda)^n} \right]^2 \\ &= \frac{4(1-\alpha)^2}{3(1+\lambda)^n(1+3\lambda)^n} \left\{ c_3c_1 + (5-3\alpha)c_1^2c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^4 \right\} \\ &- \frac{(1-\alpha)^2}{(1+2\lambda)^{2n}} \left\{ c_2 + (3-2\alpha)c_1^2 \right\}^2 \Rightarrow \\ |H_{2,2}(f)| &= \frac{4(1-\alpha)^2}{3(1+\lambda)^n(1+3\lambda)^n} \end{split}$$

$$\left|c_{3}c_{1}+(5-3\alpha)c_{1}^{2}c_{2}+\left(2\alpha^{2}-7\alpha+6\right)c_{1}^{4}\right|+\frac{(1-\alpha)^{2}}{(1+2\lambda)^{2n}}\left|\left\{c_{2}+(3-2\alpha)c_{1}^{2}\right\}^{2}\right|$$

Taking into account the following inequality

$$1 + \lambda \le 1 + 2\lambda \le 1 + 3\lambda \Rightarrow \frac{1}{(1+3\lambda)} \le \frac{1}{(1+2\lambda)} \le \frac{1}{(1+\lambda)}$$

finally, it also can be written as

$$\begin{split} |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ 4 \left| c_3c_1 + (5-3\alpha)c_1^2c_2 + \left(2\alpha^2 - 7\alpha + 6\right)c_1^4 \right| + 3 \left| \left[c_2 + (3-2\alpha)c_1^2 \right]^2 \right| \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4 \left| c_3 \right| \left| c_1 \right| + 4(5-3\alpha) \left| c_1^2 \right| \left| c_2 \right| + 4 \left(2\alpha^2 - 7\alpha + 6\right) \left| c_1^4 \right| + \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4 \left| c_3 \right| \left| c_1 \right| + 4(5-3\alpha) \left| c_1^2 \right| \left| c_2 \right| + 4 \left(2\alpha^2 - 7\alpha + 6\right) \left| c_1^4 \right| + 3 \left| c_2^2 \right| + \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ 4 \left| c_3 \right| \left| c_1 \right| + 4(5-3\alpha) \left| c_1^2 \right| \left| c_2 \right| + 4 \left(2\alpha^2 - 7\alpha + 6\right) \left| c_1^4 \right| + 3 \left| c_2^2 \right| + \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ 4 \left| c_3 \right| \left| c_1 \right| + (38-24\alpha) \left| c_1^2 \right| \left| c_2 \right| + \left(20\alpha^2 - 64\alpha + 51\right) \left| c_1^4 \right| + 3 \left| c_2^2 \right| \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4c_1 \left\{ 1-c_1^2 - \frac{\left| c_2 \right|^2}{1+c_1} \right\} + \left(38-24\alpha) \left(1-c_1^2\right) c_1^2 + \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4c_1 \left(1-c_1^2\right) + \left(\frac{3-c_1}{1+c_1}\right) \left| c_2 \right|^2 + \left(38-24\alpha) \left(1-c_1^2\right) c_1^2 + \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4c_1 \left(1-c_1^2\right) + \left(\frac{3-c_1}{1+c_1}\right) \left(1-c_1^2\right)^2 + \\ \left(38-24\alpha\right)c_1^2 - \left(38-24\alpha\right)c_1^4 + \left(20\alpha^2 - 64\alpha + 51\right) c_1^4 \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4c_1 \left(1-c_1^2\right) + \left(\frac{3-c_1}{1+c_1}\right) \left(1-c_1^2\right)^2 + \\ \left(38-24\alpha\right)c_1^2 - \left(38-24\alpha\right)c_1^4 + \left(20\alpha^2 - 64\alpha + 51\right) c_1^4 \right\} \right\} \Rightarrow \\ |H_{2,2}(f)| &\leq \frac{(1-\alpha)^2}{3(1+\lambda)^{2n}} \left\{ \begin{array}{l} 4c_1 \left(1-c_1^2\right) + \left(\frac{3-c_1}{1+c_1}\right) \left(1-c_1^2\right) \left(1+c_1\right) \left(1-c_1\right) + \\ \left(38-24\alpha\right)c_1^2 + \left(20\alpha^2 - 40\alpha + 13\right) c_1^4 \right\} \right\} \right\} \right\} \end{cases}$$

<i>C</i> ₁	-√	$-\frac{B}{2A}$	0	1	$\sqrt{-\frac{B}{2A}}$
<i>C</i> ₁	-	- ()+	+	++
$2AC_1^2 + B$ $A < 0$	- ()+	+	+ ()
$2AC_1^2 + B$ $A > 0$	+	+	+	+	++
$C_1(2AC_1^2 + B)$ $A < 0$	+ ()+ ()+	+ ()
$C_1(2AC_1^2+B)$ $A>0$	_	- ()+	+	++
,	///////////////////////////////////////				

Let $\psi(c_1) = (20\alpha^2 - 40\alpha + 12)c_1^4 + (36 - 24\alpha)c_1^2 + 3$. For convenience, saying $A = 20\alpha^2 - 40\alpha + 12$ and $B = 36 - 24\alpha$ then $\psi(c_1)$ takes the form $\psi(c_1) = Ac_1^4 + Bc_1^2 + 3$.

If the derivative is taken and set to zero, the followings are obtained.

$$\psi'(c_1) = 4Ac_1^3 + 2Bc_1 \Rightarrow 2c_1(2Ac_1^2 + B) = 0; c_1 = 0 \text{ and } 2Ac_1^2 + B = 0 \Rightarrow c_1^2 = -\frac{B}{2A}$$

Since, $0 \le \alpha < 1$ and $B = 36 - 24\alpha > 0$ then $-B < 0$. From the inequality $c_1^2 = -\frac{B}{2A}$, having two distinct real roots is possible for the case $A = 20\alpha^2 - 40\alpha + 12 < 0$.
That is, since $A < 0$ while $1 - \frac{\sqrt{10}}{5} < \alpha < 1$, there exist two distinct real roots such that $c_1 = \mp \sqrt{-\frac{B}{2A}}$. Otherwise, that is since $A > 0$ while $0 \le \alpha < 1 - \frac{\sqrt{10}}{5}$ there is no real number satisfying the condition $c_1^2 = -\frac{B}{2A}$. Accordingly, the following table can be organized.

Considering the table, the maximum value of the $\psi(c_1)$

$$\psi(c_1) = \left(20\alpha^2 - 40\alpha + 12\right)c_1^4 + (36 - 24\alpha)c_1^2 + 3.$$

will be

$$\psi(1) = 20\alpha^2 - 64\alpha + 51$$

Thus, $|H_{2,2}(f)|$ is obtained as follows

$$|H_{2,2}(f)| \le \frac{(1-\alpha)^2 \left(20\alpha^2 - 64\alpha + 51\right)}{3(1+\lambda)^{2n}}.$$

CONCLUSIONS: A new subclass of analytic functions of denoted by $S^*_{(\lambda,n)}$ has been introduced by means D^n_λ is a linear operator . we give upper bounds of the

 $H_{2,1}(f)$ and $H_{2,2}(f)$ Hankel determinants created from the coefficients of functions belonging to class $S^*_{(\lambda,n)}$

References

- Ozaki, S., On the theory of multivalent functions, II. Sci.Rep. Tokyo Bunrika Daigaku. Sect. A4, 1941,45-87.
- [2] Kargar, R., and Ebadian, A., Ozaki's conditions for general integral operator, Sahand Communications in Mathematical Analysis 5, 1 (2017), 61-67.
- [3] Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan 4(1952), 194-202.
- [4] Sakaguchi, K., A property of convex functions and an application to criteria for univalence., Bull. Nara Univ. Ed. Natur. Sci. 22, 2 (1973), 1-5.
- [5] Singh, R., and Singh, S., Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47,2 (1982),309-314.
- [6] Pommerenke C., On the coecients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41, 111-122,1966.
- [7] Pommerenke C., On the Hankel determinants of univalent functions, Mathematika, 14 108-112,1967.
- [8] A. Janteng, S.A. Halim and M.Darus, Coefficient inequality for a function whose derivative has a positive real part, J.Inequal. Pure Appl.Math., 7,(2006),1-5.
- [9] A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J.Math.Anal.,1,(2007),619-625.
- [10] K.O.Babalola, On $H_{3,1}(f)$ Hankel determinants for some classes of univalent functions, Inequality theory and applications, vol. 6, (2010), pp. 1-7.
- [11] S.Altınkaya, S. Yalçın, Third Hankel determinant for Bazilevic functions. Adv. Math., 5, (2016), 91–96.
- [12] D. Bansal, S. Maharana, J.K. Prajapat, Third order Hankel Determinant for certain univalent functions. J. Korean Math. Soc., 52, (2015),1139-1148.
- [13] D.V. Krishna, B.Venkateswarlu, T.RamReddy, Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc., 34, (2015), 121-127.
- [14] M. Raza, S.N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl., (2013), 412.
- [15] G. Shanmugam, B.A. Stephen, K.O. Babalola, Third Hankel determinant for α starlike functions. Gulf J. Math., 2, (2014),107-113.
- [16] Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math., 14, 19, 2017.
- [17] B.Kowalczyk, A. Lecko, Y.J. Sim, The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. , 97,(2018), 435-445.
- [18] A. Lecko, Y.J. Sim, B. Smiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory, (2018), 1-8.
- [19] M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math., 17, (2019),1615-1630.
- [20] L. Shi, I. Ali, M. Arif, N.E. Cho, S.Hussain and H. Khan, A Study of Third Hankel Determinant Problem for Certain Subfamilies of Analytic Functions Involving Cardioid Domain, Mathematics, 7, (2019), 418.
- [21] P.Zaprawa, Hankel Determinant for Univalent Functions Related to the Exponential Function, symmetry, 11, 1211, (2019).
- [22] Gr.Åt. Salagean, Subclasses of Univalent Functions, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin, (1983), pp. 362-372.
- [23] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operatör, Indian J. Math. Math. Sci. 25-28, (2004), pp.1429-1436.
- [24] I.O. Oros, G. Oros, On a class of univalent functions defined by a generalized Salagean operator. Complex Variables and Elliptic Equations, September Vol.53, No.9,(2008), 869-877.

M. KAMALI

- [25] Bieberbach,L. "Über die Koeffizienten derjenigen Pottenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln", Sitzungsberichte Preussische Akademie der Wissenschaften, 138: pp. 940-955, (1916).
- [26] De-Branges, L. 'A proof of the Beiberbach conjecture', Acta Math., 154:137-152, (1985).
- [27] Cho N.E., Kumar V., Kumar S.S., Ravichandran V., Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45, 213-232,2019.
- [28] S. Verma, R. Kumar, G. Murugusundaramoorthy, Upper bound for third Hankel determinant of a class of analytic functions, TWWS J. App. and Eng. Math.V.13, N.4, (2023), pp.1472-1480.
- [29] D. Breaz, A.Cataş, L.I.Cotırla, On the upper bound of the third Hankeldeterminant for certain class of analytic functions with exponential function, An. Şt. ale Univ. Ovidius, Constanta, Vol. 30(1), (2022),75-89.

DEPARTMENT OF MATHEMATICS ,FACULTY OF SCIENCE, KYRGYZ-TURKISH MANAS UNIVERSITY; BISHKEK,KYRGYZSTAN

E-mail address: muhammet.kamali@manas.edu.kg

40