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APPROXIMATION BY AN INTEGRAL TYPE

APOSTOL-GENOCCHI OPERATORS

ÖZGE DALMANOĞLU

Abstract. The goal of the current paper is to present an integral type Favard-

Szasz operators including Apostol-Genocchi poynomials. With the help of
the moments, we investigate the order of convergence in terms of the first

and the second order modulus of continuity and Peetres K-functional. We

also examine the convergence in the weighted spaces of functions by means of
weighted Korovkin type theorem.

1. Introduction

Towards the end of the 19th century, Weierstrass established a very significant
theorem on the approximation of continuous functions. He proved that every con-
tinuous function on a closed and finite interval [a, b] can be approximated uniformly
by polynomial sequences. In the very early 1900’s, Bernstein proved Weierstrass’
theorem in a much more comprehensible way by giving not only the existence but
also the notation of the polynomial sequence. In 1953, Korovkin [12] presented a
very important theorem on the uniform convergence of the linear positive opera-
tors to functions continuous on a closed interval [a, b]. In this theorem, known as
Korovkin’s theorem in the literature, only three conditions are checked in order to
guarantee the uniform convergence of the linear positive operators to the continuous
functions f in [a, b]. The ease of application of Korovkin’s theorem has allowed sev-
eral authors to define new linear positive operators and study their approximation
properties. Over the years, various generalizations of previously defined operators
have been constructed and approximation properties of these new operators have
been studied. The well known Szász-Mirakjan operators, defined by Otto Szász
[20] in 1950, is a generalization of Bernstein operators to an infinite interval [0,∞).
These operators are of the form

(Snf) (x) = e−nx
∞∑
k=0

(nx)
k

k!
f

(
k

n

)
. (1.1)
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In order to obtain approximation process in the space of Lebesque integrable func-
tions, Mazhar and Totik [15] modified the Szász operators and gave the following
Szász-Durrmeyer type linear positive operators as

(S∗nf) (x) = ne−nx
∞∑
k=0

(nx)
k

k!

∞∫
0

e−nt
(nt)

k

k!
f (t) dt. (1.2)

Durrmeyer variants of several operators have been constructed and still continue to
be studied today by many authors. The operators given in (1.2) is an example of an
integral generalization of the operators. Now we will mention some linear positive
operators which are constructed with the help of generating functions. Jakimovski
and Leviatan [10] were the first to use Appell polynomials and their generating
functions in constructing a generalization of Szász operators. They defined the
operators as

(Pnf)(x) =
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
, (1.3)

with f ∈ Ẽ[0,∞). Here Ẽ[0,∞) indicates the set of functions satisfying the prop-
erty |f(x)| ≤ eAx for each x ≥ 0 and some finite number A. Here pk(nx) are the
Appell polynomials whose generating function is given by

g(u)eux =

∞∑
k=0

pk(x)uk,

where g(u) =
∞∑
n=0

anu
n is an analytic function in the disc |u| < r, (r > 1) and

g(1) 6= 0.
In 1995, Ciupa [2] modified the Jakimovski-Leviatan operators for the functions

f , Lebesque integrable in [0,∞). The operators are given by

(P ∗nf) (x) =
e−nx

g(1)

∞∑
k=0

pk(nx)
nλ+k+1

Γ(λ+ k + 1)

∞∫
0

e−nttλ+kf (t) dt, (1.4)

and this study of Ciupa became a pioneer for defining new operators using the
Gamma function. For some recent studies on linear positive operators including
Appell polynomials or operators constructed with the help of Gamma and beta
functions, we refer to papers [1, 3, 9, 11, 14, 19, 21].
Recently, Parakash et. al. [18] have proposed a new sequence of operators with
the help of Apostol-Genocchi polynomials. For f ∈ C[0,∞), these operators are
constructed as

Mα,β
n (f ;x) = e−nx

(
1 + eβ

2

)α ∞∑
k=0

G
(α)
k (nx;β)

k!
f(k/n) (1.5)

where G
(α)
k (x;β) is generalized Apostol-Genocchi polynomials having the generat-

ing function of the form(
2z

βez + 1

)α
exz =

∞∑
k=0

G
(α)
k (x;β)

zk

k!
. (α, β ∈ C, |t| < π) (1.6)
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With the help of the Gaussian hypergeometric function

2F1(a, b; c; t) =

∞∑
k=0

(a)k(b)k
(c)k

tk

k!
,

where, (η)0 = 1, (η)n = η(η + 1)...(η + n− 1) = Γ(n+η)
Γ(η) , n ≥ 1, the explicit formula

for the Apostol-Genocchi polynomials is given in [13] by Luo and Srivastava as,

G
(α)
k (x;α) = 2α(α!)

(
k

α

) k−α∑
n=0

(
k − α
n

)(
α+ n− 1

n

)
βn

(1 + β)β+n

×
n∑
j=0

(−1)j
(
n

j

)
jn(x+ j)k−n−α 2F1(α+ n− k, n;n+ 1;

j

x+ j
).

Immediately after the aforementioned study of Prakash et. al. [18], various gener-
alizations of the operators started to appear. N. Deo et. al. [4, 5, 6] introduced
Durrmeyer type generalizations of the operators (1.5) in several papers. For exam-
ple, in [4] and [5], they used Jain and Baskakov operators, respectively, in order
to modify the operators (1.5). Similarly in [6], they studied the approximation
properties of the Beta-Apostol-Genocchi operators. M.M. Yilmaz [22] gave a gen-
eralization of (1.5), by adding new parameters to the operators. And lastly, in a
very recent paper Mishra and Deo [16] constructed again Durrmeyer variant of the
operators, this time using the Paltanea basis.

Inspired by the studies summarized above, especially from [2] and [18] we intro-
duce a Durrmeyer form generalization of Apostol-Genocchi operators as

D(α)
n (f ;x) = n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+kf(s)ds, x ≥ 0, (1.7)

where the parameter γ ≥ 0, Γ is a Gamma function and

vαn,k = e−nx
(

1 + eβ

2

)α
G

(α)
k (nx;β)

k!
. (1.8)

The article will be proceed as follows: we construct the operators with the help of
the Gamma function and it will be followed by the calculation of moments. We
establish approximation results using the Korovkin’s theorem and estimate the rate
of convergence with the help of first and second modulus of continuity and Peetre’s
K-functional. We also discuss weighted approximation results for these operators.

2. Approximation Properties of the Operators

The Lemma given below is relevant for studying the convergence of the operator

D
(α)
n (f) to the function f . Remember that CB [0,∞) denotes the space of all real-

valued uniformly continuous and bounded functions on the positive real axis R+

endowed with the norm ‖g‖ := supx∈[0,∞) |g(x)| .
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Lemma 2.1. Letting es = ts, for all x ≥ 0, we have

D(α)
n (e0;x) = 1, (2.1)

D(α)
n (e1;x) = x+

1

n

(
(γ + 1) +

α

1 + βe

)
, (2.2)

D(α)
n (e2;x) = x2 +

x

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
, (2.3)

+
1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)
.

Proof. The proof of the theorem is obvious from the identities
∞∑
k=0

G
(α)
k (nx;β)

k!
k = enx

(
2

1 + βe

)α
[nx+

α

1 + βe
]

∞∑
k=0

G
(α)
k (nx;β)

k!
k2 = enx

(
2

1 + βe

)α [
n2x2 +

nx(1 + 2α+ βe)

1 + βe
+
α2 − 2αβe− αβ2e2

(1 + βe)2

]
previously obtained in [18]. �

By making use of the above Lemma, we can give the following remark.

Remark. Letting υ
(i)
n (x) = D

(α)
n ((e1−x)i;x) and using the above Lemma, the first

two central moments of the operators D
(α)
n (f) can be obtained as:

υ(1)
n (x) =

1

n

(
(γ + 1) +

α

1 + βe

)
υ(2)
n (x) =

1

n2
(γ + 1)(γ + 2) +

2x

n
+

(2γ + 3)

n2

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2
.

Lemma 2.2. For the operators D
(α)
n (f), the following holds for all g ∈ CB [0,∞)

|D(α)
n (g;x)| ≤ ‖g‖.

Proof.

|D(α)
n (g;x)| = n

∣∣∣∣∣
∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+kg(s)ds

∣∣∣∣∣
≤ ‖g‖

∞∑
k=0

vαn,k(x)
n

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+kds

= ‖g‖D(α)
n (1;x).

The proof is completed from Lemma 2.1. �

Theorem 2.3. Let f ∈ C[0,∞)
⋂
E, where E defines the class

E :=
{
f : x ∈ C[0,∞), |f(x)| ≤MeAxfor some positive constant M,A

}
.

Then D
(α)
n (f) converges uniformly on every compact subset of [0,∞).

Proof. According to Lemma 2.1, we obtain

lim
n→∞

D(α)
n (ti;x) = xi, for i = 0, 1, 2.

Hence, the proof is obvious from the well-known Korovkin’s Theorem. �
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We now recall the first and the second modulus of continuity of a function f ∈
CB [0,∞). They are defined as,

w(f ; δ) = sup
0≤h≤δ

sup
x∈[0,∞]

|f(x+ h)− f(x)|

and

w2(f ; δ) = sup
0≤h≤δ

sup
x∈[0,∞]

|f(x+ 2h)− 2f(x+ h) + f(x)| ,

respectively. The Peetre’s K-functional of the function f ∈ CB [0,∞) is defined by

K2(f ; δ) = inf
g∈C2

B [0,∞)

{
‖f − g‖CB [0,∞) + δ ‖g‖C2

B [0,∞)

}
. (2.4)

Here C2
B [0,∞) is the space of functions f such that f, f ′, f ′′ ∈ CB [0,∞). i.e.

C2
B [0,∞) = {f ∈ CB [0,∞) : f ′, f ′′ ∈ CB [0,∞)} .

The norm on C2
B is defined as

‖g‖C2
B

= ‖g‖CB + ‖g′‖CB + ‖g′′‖CB . (2.5)

It is already known that the following inequality holds for all δ ≥ 0:

K(f ; δ) ≤ C
{
w2(f ;

√
δ) + min{1, δ} ‖f‖

}
, (2.6)

where C is a positive constant [2].
We also need the following Lemma for the proof of an approximation theorem

given below.

Lemma 2.4. ([8]) Let u ∈ C2[0,∞) and Rn, n ≥ 0 be a sequence of positive linear
operators with the property Rn(1;x) = 1. Then

|Rn(u;x)− u(x)| ≤ ‖u′‖
√
Rn((t− x)2;x) +

1

2
‖u′′‖Rn((t− x)2;x).

Now we can give the following approximation results concerning the first and
the second modulus of continuity.

Theorem 2.5. Let f ∈ CB [0,∞) . For the operators D
(α)
n (f), and for x ∈ [0,∞)

the following inequality holds:∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤[
1 +

√
2x+

1

n

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)]
w(f ;

1√
n

).

Proof. From the definition of the operator D
(α)
n (f) and the modulus of continuity

function, we can write∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ n ∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k |f(s)− f(x)| ds

≤ n
∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k

(
1 +

1

δ
|s− x|

)
w(f ; δ)ds

≤
∞∑
k=0

vαn,k(x)

(
1 +

n

δ

1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k |s− x| ds
)
w(f ; δ).



22 Ö. DALMANOĞLU

Applying Cauchy-Schwarz inequality to the integral term yields∫ ∞
0

e−ns(ns)γ+k |s− x| ds ≤ 1

n
Γ(γ+k+1)

√
x2 − 2x

n
(γ + k + 1) +

(γ + k + 1)(γ + k + 2)

n2

from which we get∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ w(f ; δ)

(
1 +

1

δ

∞∑
k=0

vαn,k(x)

√
x2 − 2x

n
(γ + k + 1) +

(γ + k + 1)(γ + k + 2)

n2

)
.

Again the application of Cauchy-Schwarz inequality to the sum term gives us∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤
1 +

1

δ

√√√√ ∞∑
k=0

vαn,k(x)

(
x2 − 2x

n
(γ + k + 1) +

(γ + k + 1)(γ + k + 2)

n2

)w(f ; δ)

and from the identities given in the proof of Lemma 2.1, we can rewrite the above
inequality as∣∣∣D(α)

n (f ;x)− f(x)
∣∣∣ ≤[

1 +
1

δ

1√
n

√
2x+

1

n

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

(1 + βe)2

)]
w(f ; δ)

and finally choosing δ = 1√
n

, we get the desired result. �

Theorem 2.6. If f ∈ C[0, a], then for any x ∈ [0, a], we have∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ 2

a
‖f‖h2 +

3

4
(2 + a+ h2)w2(f ;h)

where h =
4

√
D

(α)
n ((e1 − x)2;x) = 4

√
2x
n + 1

n2

(
(γ + 1)(γ + 2) + (2γ + 3) α

1+βe + α2−2αeβ−αe2β2

(1+βe)2

)
.

Proof. Let fh be the second-order Stieklov function attached to the function f .

Since D
(α)
n (1;x) = 1, we can write∣∣∣D(α)

n (f ;x)− f(x)
∣∣∣ ≤ ∣∣∣D(α)

n (f − fh;x)
∣∣∣+
∣∣∣D(α)

n (fh;x)− fh(x)
∣∣∣+ |fh(x)− f(x)|

≤ 2 ‖f − fh‖+
∣∣∣D(α)

n (fh;x)− fh(x)
∣∣∣ . (2.7)

Considering the fact that fh ∈ C2[0, a] and using Lemma 2.4, we obtain∣∣∣D(α)
n (fh;x)− fh(x)

∣∣∣ ≤ ‖f ′h‖√D(α)
n ((t− x)2;x) +

1

2
‖f ′′h ‖D(α)

n ((t− x)2;x). (2.8)

The result obtained by Zhuk [23] states that, if f ∈ C[a, b] and h ∈ (0, b−a2 ), then
the following inequalities are achieved:

‖f − fh‖ ≤
3

4
w2(f ;h) and ‖f ′′h ‖ ≤

3

2

1

h2
w2(f ;h). (2.9)

The Landau’s inequality

‖f ′h‖ ≤
2

a
‖fh‖+

a

2
‖f ′′h ‖

and the inequalities in (2.9) implies,

‖f ′h‖ ≤
2

a
‖f‖+

3a

4

1

h2
w2(f, h).
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Using the above inequality in (2.8) and then choosing h =
4

√
D

(α)
n ((t− x)2;x), we

obtain∣∣∣D(α)
n (fh;x)− fh(x)

∣∣∣ ≤ (2

a
‖f‖+

3a

4

1

h2
w2(f, h))

)
h2 +

1

2

3

2

1

h2
w2(f ;h)h4. (2.10)

Substituting the last inequality into (2.7), we get∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ 2 ‖f − fh‖+
∣∣∣D(α)

n (fh;x)− fh(x)
∣∣∣

≤ 2
3

4
w2(f, h) +

2

a
‖f‖h2 +

3a

4
w2(f, h) +

3

4
w2(f ;h)h2, (2.11)

which gives the desired result as the terms arranged. �

An estimation for the smooth functions is given in the below theorem:

Theorem 2.7. For functions f ∈ C2
B [0,∞), we have∣∣∣D(α)

n (f ;x)− f(x)
∣∣∣ ≤ ηn(x) ‖f‖C2

B [0,∞) (2.12)

where ηn(x) = 1
n

{
x+ 1

2

{
(γ + 1)(γ + 2) + (2γ + 3) α

1+βe + α2−2αeβ−αe2β2

(1+βe)2

}}
.

Proof. By using Taylor’s expansion of f ∈ C2
B [0,∞) and the linearity of f , we can

write

D(α)
n (f ;x)− f(x) = f ′(x)D(α)

n ((t− x);x) +
1

2
f ′′(ξ)D(α)

n ((t− x)2;x), ξ ∈ (t, x).

Substituting the central moments of the operators given in Remark into the above
equation, we get∣∣∣D(α)

n (f ;x)− f(x)
∣∣∣ ≤ 1

n

(
(γ + 1) +

α

1 + βe

)
‖f ′‖CB

+
1

2

{
1

n2
(γ + 1)(γ + 2) +

2x

n
+

(2γ + 3)

n2

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

}
‖f ′′‖CB .

For sufficiently large n, we have∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ 1

n

(
(γ + 1) +

α

1 + βe

)
‖f ′‖CB

+
1

n

{
x+

1

2

{
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

(1 + βe)2

}}
‖f ′′‖CB

≤ 1

n

{
x+

1

2

{
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

(1 + βe)2

}}
(‖f ′‖CB + ‖f ′′‖CB )

from which the proof is completed by considering the equality in (2.5). �

Now we give an estimate with the use of Peetre’s K-functional.

Theorem 2.8. If f ∈ CB [0,∞), then we have∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ 2M
(
w2(f ; γ) + νn(x) ‖f‖CB

)
where γ := γn(x) = ηn(x)

2 and ηn(x) is given in Theorem 2.7. Here νn(x) =

min{1, γ2
n(x)} and M is a constant.
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Proof. In the proof of this theorem we will use the previous theorem and the defi-
nition of Peetre’s K-functional. For f ∈ CB [0,∞) and u ∈ C2

B [0,∞), we have∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ ∣∣∣D(α)
n (f ;x)−D(α)

n (u;x)
∣∣∣+
∣∣∣D(α)

n (u;x)− u(x)
∣∣∣+ |u(x)− f(x)|

≤ 2 ‖f − u‖CB +
1

n

{
x+

1

2

{
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

(1 + βe)2

}}
‖u‖C2

B
.

Taking the infimum of both sides of the above inequality and since the left hand
side is independent of the function u, we get∣∣∣D(α)

n (f ;x)− f(x)
∣∣∣ ≤ 2 inf

u∈C2
B [0,∞)

{
‖f − u‖CB + γn(x) ‖u‖C2

B

}
(2.13)

where γn(x) = ηn(x)
2 and ηn(x) is already given in Theorem (2.7).

The definition of K-functional yields,∣∣∣D(α)
n (f ;x)− f(x)

∣∣∣ ≤ 2M
{
w2(f,

√
γn) + min{1, γn} ‖f‖CB

}
. (2.14)

Letting νn(x) = min{1, γn}, we get the desired result. �

Now consider the following Lipschitz-type space [17]

Lip∗M (r) :=

{
f ∈ CB [0,∞) : |f(s)− f(x)| ≤M |s− x|r

(s+ x)r/2
, s, x ∈ (0,∞)

}
where M is a positive constant and r ∈ (0, 1].

We first give the following Lemma which will be used in the proof of the next
theorem.

Lemma 2.9. For all x ≥ 0 and n ∈ N, we have

D(α)
n (|s− x|;x) ≤

√
υ

(2)
n (x) (2.15)

where υ
(2)
n (x) = D

(α)
n ((s− x)2;x) given in Remark.

Proof.

D(α)
n (|s− x|;x) = n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|s− x|ds. (2.16)

Applying Cauchy-Schwarz inequality to the series above, we get

D(α)
n (|s− x|;x) ≤ n

{ ∞∑
k=0

vαn,k(x)

(
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|s− x|ds
)2
} 1

2

.

(2.17)
Applying Cauchy-Schwarz inequality once more, this time to the integral term
above, we obtain∫ ∞

0

e−ns(ns)γ+k|s− x|ds ≤
√

Γ(γ + k + 1)

n

(∫ ∞
0

e−ns(ns)γ+k(s− x)2ds

) 1
2

.

Substituting the above inequality into (2.17) and arranging the terms, we finally
get

D(α)
n (|s−x|;x) ≤

{
n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

(∫ ∞
0

e−ns(ns)γ+k(s− x)2ds

)} 1
2

=

√
υ

(2)
n (x)
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and the proof is completed. �

Theorem 2.10. Let f ∈ Lip∗M (r). Then for all x > 0 and n ∈ N, we have

|D(α)
n (f ;x)− f(x)| ≤M

(
υ

(2)
n (x)

x

) r
2

. (2.18)

where υ
(2)
n (x) is given in Remark.

Proof. Assume r = 1, i.e., f ∈ Lip∗M (1). Hence we can write

|D(α)
n (f ;x)− f(x)| ≤ n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|f(s)− f(x)|ds

≤ n
∞∑
k=0

vαn,k(x)

(
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k |s− x|√
s+ x

ds

)
.

(2.19)

By taking the advantage of the fact 1√
s+x

< 1√
x

and Lemma 2.9, from (2.19) we

get

|D(α)
n (f ;x)− f(x)| ≤ M√

x
n

∞∑
k=0

vαn,k(x)

(
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|s− x|ds
)

=
M√
x
D(α)
n (|s− x|;x)

≤M

√
υ

(2)
n (x)

x
(2.20)

which confirms the claimed result for r = 1.
Now let r ∈ (0, 1). By the application of Hlder’s inequality twice by taking p = 1

r

and p = 1
1−r , we get

|D(α)
n (f ;x)− f(x)| ≤ n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|f(s)− f(x)|ds

≤ n

{ ∞∑
k=0

vαn,k(x)

(
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|f(s)− f(x)|ds
) 1
r

}r

≤

{
n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|f(s)− f(x)| 1r ds

}r
.

Since f ∈ Lip∗M (r), r ∈ (0, 1), we have

|D(α)
n (f ;x)− f(x)| ≤M

{
n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k |s− x|√
s+ x

ds

}r

≤M
(

1√
x

)r{
n

∞∑
k=0

vαn,k(x)
1

Γ(γ + k + 1)

∫ ∞
0

e−ns(ns)γ+k|s− x|ds

}r

= M

(
1√
x

)r {
D(α)
n (|s− x|;x)

}r
.



26 Ö. DALMANOĞLU

By using Lemma (2.9), we get

|D(α)
n (f ;x)− f(x)| ≤M

(
1√
x

)r (√
υ

(2)
n (x)

)r
= M

(
υ

(2)
n (x)

x

) r
2

(2.21)

which is the desired result. �

3. Approximation properties in weighted spaces

Let ρ(x) = 1+x2 be the weighted function and Mf is a constant depending only
on f. Bρ

(
R+

0

)
is the set of all functions defined on [0,∞) satisfying |f(x)| ≤Mfρ(x).

Bρ
(
R+

0

)
is a normed space with the norm

‖f‖ρ = sup
x∈[0,∞)

|f(x)|
ρ(x)

We also have the following subspaces of Bρ
(
R+

0

)
:

Cρ
(
R+

0

)
=

{
f ∈ Bρ

(
R+

0

)
: f is continuous on [0,∞)

}
C∗ρ
(
R+

0

)
=

{
f ∈ Cρ

(
R+

0

)
: lim
x→∞

|f(x)|
ρ(x)

= Kf <∞
}

It is obvious that C∗ρ
(
R+

0

)
⊂ Cρ

(
R+

0

)
⊂ Bρ

(
R+

0

)
[7].

Theorem 3.1. (See [7]) The sequence of positive linear operators (Ln)n≥1 act

from Cρ
(
R+

0

)
to Bρ

(
R+

0

)
if and only if there exists a positive constant k such that

‖Ln (ρ)‖ρ ≤ k.

Theorem 3.2. (See [7])
i) There exists a sequence of linear positive operators An acting from Cρ

(
R+

0

)
to Bρ

(
R+

0

)
such that

lim
n→∞

∥∥An (φk; .
)
− φk(.)

∥∥
ρ

= 0 (k = 0, 1, 2) (3.1)

and a function f∗ ∈ Cρ\C∗ρ with lim
n→∞

‖An (f∗; .)− f∗(.)‖ρ ≥ 1.

ii) If a sequence of linear positive operators An acting from Cρ
(
R+

0

)
to Bρ

(
R+

0

)
satisfies the conditions in (3.1), then

lim
n→∞

‖An (f ; .)− f(.)‖ρ = 0

for every f ∈ C∗ρ
(
R+

0

)
.

Lemma 3.3. Let ρ(x) = 1 + x2 be a weight function. If f ∈ Cρ
(
R+

0

)
, then there

exists a positive constant k such that∥∥∥D(α)
n (ρ; .)

∥∥∥
ρ
≤ k.

Proof. Lemma (2.1) implies,

D(α)
n (1 + t2;x) = 1 + x2 +

x

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
(3.2)

+
1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)
(3.3)
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from which we have,

∥∥∥D(α)
n (ρ; .)

∥∥∥
ρ
≤ sup

x≥0

1

1 + x2

{
1 + x2 +

x

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
+

1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)}
≤ 1 +

1

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
+

1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

(1 + βe)2

)
.

Since 1
n → 0, there exists a positive constant K such that∥∥∥D(α)

n (ρ; .)
∥∥∥
ρ
≤ 1 +K

which implies that the proof is completed. �

Lemma (2.4) implies that the operatorsD
(α)
n (f ;x) defined by (1.7) maps Cρ

(
R+

0

)
into Bρ

(
R+

0

)
.

Theorem 3.4. Let the sequence of operators D
(α)
n (f ;x) defined by (1.7). For any

f ∈ C∗ρ
(
R+

0

)
, one gets

lim
n→∞

∥∥∥D(α)
n (f ; .)− f

∥∥∥
ρ

= 0.

Proof. It is sufficient to show that the sequence of operators D
(α)
n (f ;x) satis-

fies three criterions of the weighted Korovkin Theorem. Keeping the identity∥∥∥D(α)
n

(
tk; .
)
− xk

∥∥∥
ρ

= sup
x≥0

|D(α)
n (tk;.)−xk|

1+x2 in mind, we have the following calcula-

tions:
For k = 0, Lemma (2.1) implies

lim
n→∞

∥∥∥D(α)
n (1; .)− 1

∥∥∥
ρ

= lim
n→∞

sup
x≥0

∣∣∣D(α)
n (1;x)− 1

∣∣∣
1 + x2

= 0. (3.4)

For k = 1,

sup
x≥0

∣∣∣D(α)
n (t;x)− x

∣∣∣
1 + x2

= sup
x≥0

1

1 + x2

(
(γ + 1) +

α

1 + βe

)
1

n

from which we have

lim
n→∞

∥∥∥D(α)
n (t; .)− x

∥∥∥
ρ

= 0 (3.5)
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Lastly for k = 2 we have,

sup
x≥0

∣∣∣D(α)
n

(
t2;x

)
− x2

∣∣∣
1 + x2

=
1

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
sup
x≥0

x

1 + x2

+
1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)
sup
x≥0

1

1 + x2

≤ 1

n

(
(2γ + 3) +

1 + 2α+ βe

1 + βe

)
+

1

n2

(
(γ + 1)(γ + 2) + (2γ + 3)

α

1 + βe
+
α2 − 2αeβ − αe2β2

n2(1 + βe)2

)
which implies lim

n→∞

∥∥∥D(α)
n

(
t2; .
)
− x2

∥∥∥
ρ

= 0. From this, the proof of the theorem is

completed. �
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[8] I. Gavrea, I. Raşa, Remarks on some quantitative Korovkin-type results, Rev. Anal. Numer.
Theor. Approx., 22 (1993) no.2, 173176 .

[9] Ş. Güngör, B. Çekim, and M. Özarslan, Approximation results for the operators involving
beta function and the Boas-Buck-Sheffer polynomials, Filomat, 38.1 (2024), 171187.

[10] A. Jakimovski, D. Leviatan, General Szász operators for the approximation in the infinite

interval, Mathematica (Cluj) 34 (1969), 97-103.
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