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Abstract. In this manuscript, using the concept of C∗-algebra valued gen-
eralized metric spaces, fixed point results for self mappings with contractive

conditions related to a nondecreasing function ψ : [0,+∞) −→ [0,+∞) such

that limm→∞ ψm(s) = 0, ∀ s ∈ (0,+∞), are established. As an application,
uniqueness and existence result for integral equation are also provided.

1. Introduction and Preliminaries

In 1947, Segal [2] initiate the word “C∗-algebra” to explain a “uniformly closed,
self adjoint algebra of bounded operators on a Hilbert space”. A C∗-algebra[3] is
regularly use to describe a physical structure in statistical mechanics and quantum
field theory and it has subsequently emerged as a significant area of research. As
we have known that, the most important result in the theory of fixed point is the
Banach contractive principle. The principle has been extensively used in various
branches of physics and mathematics. There are numerous generalizations for such
a principle. Generally, the principle has been divided in two ways. On one side,
usual contraction conditions was changed by a weakly contraction. While on other
side, different types of metric spaces replaced the action spaces[3, 4].
The first generalization in this direction is Edelstein’s contractive condition [5] in
which the Banach condition is changed by picking different points from the space Z
and allowing constant β = 1. Later, Rakotch[6] developed a contractive condition
in which a monotonic decreasing function β : [0, 1)→ [0, 1) replaces the constant β
of the contraction condition. That is,

d(Sη, Sζ) ≤ β(t)d(η, ζ), ∀ η, ζ ∈ Z.
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Later on, it was generalized by Kannan[7], in which he has changed the contraction
condition by

d(Sη, Sζ) ≤ β{d(η, Sη) + d(ζ, Sζ)}, where 0 < β <
1

2
.

Following Kannan, Chatterjea[8] established a fixed point theorem for operators
that satisfy the given criteria ∀ η, ζ ∈ Z.

d(Sη, Sζ) ≤ β{d(η, Sζ) + d(ζ, Sη)}, where 0 < β < 1.

Especially Mustafa in collaboration with Sims [9] established the idea of generalized
metric space and proved various results of fixed point. Since then, many researchers
studied the theory of fixed point in generalized metric spaces and numerous sig-
nificant results are obtained [10, 11, 12, 13]. In 2014, Ma et al. [4] developed the
idea of C∗-algebra valued metric spaces and presented several fixed point results
by giving the structure of contraction mapping with reference to C∗-algebra, corre-
sponding to the Banach contractive principle. Also they used expansive mappings
and proved various fixed point results.
After that, Kamran et al. [21] extended the result of Ma et al.[4] to C∗-algebra
valued b-metric space and they generalized the Banach contractive principle. For
some interesting fixed point results, see, also, the papers of Humaira et al. [38] ,
Hussain et al. [39] , Shoaib et al. ([40, 41] ) and Zada et al. [42] .

In this paper we used the idea of Shatanawi [1] and presented various fixed point
theorems in C∗-algebra valued generalized metric spaces. Our result generalizes the
result of Mustafa and Sims[9], Ma et al.[4] and Kamran et al.[21]. Now we summa-
rize the necessary definitions and propositions that should be needed throughout
the paper. Throughout the paper, M will denote unital C∗-algebra and N will
denote natural number.

Definition 1.1. [4] An algebra M over C (complex number) is known as ∗-algebra
if there is an involution ∗ : M→M satisfy the following axioms

(η + ζ)∗ = η∗ + ζ∗,

(αη)∗ = αη∗,

(ηζ)∗ = ζ∗η∗,

(η∗)∗ = η, for all η, ζ ∈M, and α ∈ C.

Definition 1.2. [4] A Banach ∗-algebra (M , ∗) is said to be a C∗-algebra if

‖ηη∗‖ = ‖η‖2,

∀ η ∈M.

Example 1.1. [4] Suppose Z be a compact Hausdroff space and C◦(Z) denote all
continuous function. The involution map ∗ : C◦(Z)→ C◦(Z) is defined by

g∗(a) = g(a), ∀ a ∈ Z.

Then C◦(Z) is a C∗-algebra. Define norm on C◦(Z) as

‖g(a)‖ = sup
a∈Z
|g(a)|.
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This norm is submultiplicative. In fact

‖gf‖ = sup
a∈Z
|g(a)f(a)|

≤ sup
a∈Z
|g(a)| sup

a∈Z
|f(a)|

= ‖g‖‖f‖.
Also,

‖gg∗‖ = sup
a∈Z
|g(a)g∗(a)|

= sup
a∈Z
|g(a)g(a)|,

= sup
a∈Z
|g(a)|2.

Thus C◦(X) is a C∗-algebra.

Definition 1.3. [1] Suppose Z 6= ∅ and G : Z3 → [0,+∞) is a map, which satisfies
the following the conditions:

G(η, ζ, θ) = 0, iff η = ζ = θ,

G(η, η, ζ) > 0, with η 6= ζ,

G(η, η, ζ) ≤ G(η, ζ, θ), with θ 6= ζ,

G(η, ζ, θ) = G(η, θ, ζ) = G(ζ, θ, η) = · · · ,
G(η, ζ, θ) ≤ G(η, a, a) +G(a, ζ, θ), ∀ η, ζ, θ, a ∈ Z.

Then Z together with a map G is known as generalized metric space.

Example 1.2. [1] Assume that (R, d) be the usual metric space. Now a map G is
defined by

G(η, ζ, θ) = d(η, ζ) + d(ζ, θ) + d(η, θ), ∀ η, ζ, θ ∈ R.
Then clearly R with a map G is a generalized metric space.

The next definition is taken from [36].

Definition 1.4. Suppose Z 6= ∅ and G : Z3 →M(C∗-algebra) is a map satisfying

G(η, ζ, θ) = 0 iff η = ζ = θ,

G(η, η, ζ) > 0 with η 6= ζ,

G(η, η, ζ) ≤ G(η, ζ, θ) with ζ 6= θ,

G(η, ζ, θ) = G(ζ, θ, η) = G(η, θ, ζ) = · · · ,
G(η, ζ, θ) ≤ G(η, a, a) +G(a, ζ, θ), ∀ η, ζ, θ, a ∈ Z (rectangle inequality).

Then (Z,M, G) is known as C∗-algebra valued generalized metric space.

A “C∗-algebra valued generalized metric space” is now referred to as a ‘C∗-valued
generalized metric space’.

Example 1.3. [36] Suppose X = {η, ζ} and M2(C) of 2× 2 matrices is identified
by B(C2) be a C∗-algebra. Suppose

G(η, η, η) = G(ζ, ζ, ζ) = 0,

G(η, η, ζ) = I,

G(η, ζ, ζ) = 2I,
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enlarge G to Z × Z × Z by using symmetry. Then the triplet (Z,M2, G) is a C∗-
valued generalized metric space.

Example 1.4. [36] Suppose Z = C, M = M3(C) and α, β > 0, set

G(η, ζ, θ) =

 g(η, ζ, θ) 0 0
0 αg(η, ζ, θ) 0
0 0 βg(η, ζ, θ)

 ,
where g(η, ζ, θ) = |η−ζ|+ |ζ−θ|+ |θ−η|. Then (Z,M, G) is a C∗-valued generalized
metric space.

Definition 1.5. [36] A sequence {ηc} in Z is known as G-convergent to η ∈ Z with
respect to (Z,M, G) if

lim
c,d→∞

G(η, ηc, ηd) = 0.

That is, ∀ ε > 0, ∃ k ∈ N so that

‖G(η, ηc, ηd)‖ < ε, ∀ c, d > k.

The next proposition is essentially contains in [36], but we will prove it for
convenience.

Proposition 1.1. Suppose (Z,M, G) be a C∗-valued generalized metric space,
{ηc} ⊆ Z, η ∈ Z. Then all are equivalent

ηc → η as c→∞ (1)

G(ηc, ηc, η) → 0 as c→∞ (2)

G(ηc, η, η) → 0 as c→∞. (3)

Proof. (1) ⇒ (2) if ηc
G−→ η, that is, ∀ ε > 0, ∃ k ∈ N, so that, ∀ c, d > k,

‖G(ηc, ηd, η)‖ < ε, especially ‖G(ηc, ηc, η)‖ < ε.
Hence G(ηc, ηc, η)→ 0 as c→∞.
(2)⇒ (3) if ∀ ε > 0, there exists k ∈ N so that ∀ c > N, we have G(ηc, ηc, η) < ε/2,
when c > N. Then,

‖G(ηc, η, η)‖ = ‖G(η, ηc, η)‖,
≤ ‖G(η, ηc, ηc)‖+ ‖G(ηc, ηc, η)‖ < ε,

that is G(ηc, η, η)→ 0 as c→∞.
(3)⇒ (1) if G(ηc, η, η)→ 0 as c→∞, then for ε > 0, ∃ k1 ∈ N, so that ∀ c > k1,
‖G(ηc, η, η)‖ < ε/2, there exists k2 ∈ N so that ∀ d > k2, ‖G(ηd, η, η)‖ < ε/2. Let
k = k1 + k2, ∀ c, d > N,

‖G(ηc, ηd, η)‖ ≤ ‖G(ηc, η, η)‖+ ‖G(η, ηd, η)‖ < ε,

i.e. ηc
G−→ η as c→∞. �

Definition 1.6. A sequence {ηc} in (Z,M, G) is called G-Cauchy iff

lim
c,d,e→∞

G(ηc, ηd, ηe) = 0, (4)

that is, ∀ ε > 0, ∃ k ∈ N so that

‖G(ηc, ηd, ηe)‖ < ε, ∀ c, d, e > k.

The triplet (Z,M, G) is known as G-complete if all G-Cauchy {ηc} in M is G-
convergent.
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The above (Example 1.4) is complete. See the following proof.

Proof. For completeness, let {ηc} ⊆ (Z,M, G) be a G-Cauchy. Then ∀ ε > 0, ∃
k ∈ N so that

‖G(ηd, ηc, ηc)‖ = max {g(ηd, ηc, ηc), αg(ηd, ηc, ηc), βg(ηd, ηc, ηc)} < ε.

So g(ηd, ηc, ηc) = 2|ηd− ηc| < ε. Since Z is complete, ∃ η ∈ Z so that ηc → η. Then
there exits k◦ ∈ N so that |ηc − η| < ε/2, for any c > k◦. It follows that

‖G(ηc, η, η)‖ = max {2|η − ηc|, 2α|η − ηc|, 2β|η − ηc|}
= 2 max {1, α, β}|η − ηc|
< max {1, α, β}ε.

Therefore, ηc
G−→ η and (Z,M, G) is complete. �

Proposition 1.2. A sequence {ηc} in (Z,M, G) is known as G-Cauchy iff ∀ ε > 0,
there exists k ∈ N, so that ‖G(ηd, ηc, ηc)‖ < ε, ∀ c, d > k.

Proof. For ε > 0, ∃ k1 ∈ N so that ‖G(ηd, ηc, ηc)‖ < ε/2, ∀ c, d > k1; ∃ k2 ∈ N so
that ‖G(ηe, ηc, ηc)‖ < ε/2, ∀ c, e > k2. So for the above ε, let k = k1 + k2, where
c, d, e > k. Then,
‖G(ηd, ηc, ηe)‖ ≤ ‖G(ηd, ηc, ηc)‖ + ‖G(ηc, ηc, ηe)‖ < ε, i.e. {ηc} is a G-Cauchy
sequence. �

Definition 1.7. Let the triplet (Z,M, G) be a C∗-valued generalized metric space.
A map S : Z → Z is known as contractive mapping if ∃ A ∈M, ‖A‖ < 1 such that

G(Sη, Sζ, Sθ) ≤ A∗G(η, ζ, θ)A, for all η, ζ, θ ∈ Z.

2. Fixed Point Results via Ψ-Contraction

Further we suppose that let Ψ be the set of all functions ψ such that ψ : R+ → R+

is a nondecreasing map with limm→+∞ ψm(s) = 0, ∀ s ∈ (0,+∞). A ψ is said to
be a Ψ-map if ψ ∈ Ψ. If ψ is Ψ-map, then

ψ(s) < s ∀ s ∈ (0,+∞),

ψ(0) = 0.

Theorem 2.1. Suppose (Z,M, G) is a complete C∗-valued generalized metric space.
Let the map S : Z → Z satisfies

G(Sη, Sζ, Sθ) ≤ ψ∗(G(η, ζ, θ))ψ,

∀ η, ζ, θ ∈ Z. Then there exists a unique y ∈ Z such that Sy = y.

Proof. Choose one arbitrary point η◦ ∈ Z and ηc = Sηc−1, c = 1, 2, 3, · · · ,
i.e.

η1 = Sη◦,

η2 = Sη1 = S2η◦,

η3 = Sη2 = S3η◦,

...

ηc = Sηc−1 = Scη◦.
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We have

G(ηc, ηc+1, ηc+1) = G(Sηc−1, Sηc, Sηc)

≤ ψ∗(G(ηc−1, ηc, ηc))ψ = ψ∗(G(Sηc−2, Sηc−1, Sηc−1))ψ

≤ ψ∗ · ψ∗(G(ηc−2, ηc−1, ηc−1))ψ · ψ = (ψ∗)2(G(ηc−2, ηc−1, ηc−1))ψ2

≤ (ψ∗)2(G(ηc−2, ηc−1, ηc−1))ψ2

≤ (ψ∗)3(G(ηc−3, ηc−2, ηc−2))ψ3

...

G(ηc, ηc+1, ηc+1) ≤ (ψ∗)c(G(η◦, η1, η1))ψc.

For ε > 0,

lim
c→∞

(ψ∗)c(G(η◦, η1, η1))ψc = 0,

and ψ(ε) < ε, ∃ q◦, so that

(ψ∗)c(G(η◦, η1, η1))ψc < ε− ψ(ε), ∀ c ≥ q◦.

Thus

G(ηc, ηc+1, ηc+1) < ε− ψ(ε). (5)

Now, for any two positive integer c, d and d > c, then

G(ηc, ηd, ηd) < ε, ∀ d ≥ c ≥ q◦. (6)

We prove (6) by induction. Inequality (6) holds for d = c + 1 by using (5) and
ε − φ(ε) < ε. Suppose that (6) holds for d = q. Now we check for d = q + 1. By
rectangle inequality we get

G(ηc, ηq+1, ηq+1) ≤ G(ηc, ηc+1, ηc+1) +G(ηc+1, ηq+1, ηq+1)

= G(ηc, ηc+1, ηc+1) +G(Sηc, Sηq, Sηq)

≤ G(ηc, ηc+1, ηc+1) + ψ∗(G(ηc, ηq, ηq))ψ

= G(ηc, ηc+1, ηc+1) + ψ∗{(G(ηc, ηq, ηq))
1/2(G(ηc, ηq, ηq))

1/2}ψ
= G(ηc, ηc+1, ηc+1) + {ψ(G(ηc, ηq, ηq))

1/2}∗{ψ(G(ηc, ηq, ηq))
1/2}

= G(ηc, ηc+1, ηc+1) + |ψ(G(ηc, ηq, ηq))
1/2|2.

Since |G(ηc, ηq, ηq)| is always positive, then

G(ηc, ηq+1, ηq+1) = G(ηc, ηc+1, ηc+1) + ψ2(G(ηc, ηq, ηq))

< ε− ψ(ε) + ψ(G(ηc, ηq, ηq))

< ε− ψ(ε) + ψ(ε) = ε.

We conclude that (6) holds ∀ d ≥ c ≥ q◦. It means that {ηc} is aG-Cauchy in respect
of M. As (Z,M, G) is complete, then ∃ y ∈ Z so that ηc −→ y as c −→∞.
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For existence of fixed point we have

G(y, y, Sy) ≤ G(y, y, ηc+1) +G(ηc+1, ηc+1, Sy)

= G(y, y, ηc+1) +G(Sηc, Sηc, Sy)

≤ G(y, y, ηc+1) + ψ∗(G(ηc, ηc, y))ψ

= G(y, y, ηc+1) + ψ∗{(G(ηc, ηc, y))1/2(G(ηc, ηc, y))1/2}ψ
= G(y, y, ηc+1) + {ψ(G(ηc, ηc, y))1/2}∗{ψG(ηc, ηc, y))1/2}
= G(y, y, ηc+1) + |ψ(G(ηc, ηc, y)1/2|2.

Since |G(ηc, ηc, y)| is always positive, then

G(y, y, Sy) = G(y, y, ηc+1) + ψ2(G(ηc, ηc, y),

< G(y, y, ηc+1) +G(ηc, ηc, y),

−→ 0 as c −→∞.

Thus G(y, y, Sy) = 0 and this shows that Sy = y.
Now for the uniqueness, suppose z be other fixed point of S, then y 6= z. As ψ is a
ψ-map, then

G(y, y, z) = G(Sy, Sy, Sz)

≤ ψ∗(G(y, y, z))ψ

= {ψ(G(y, y, z))1/2}∗{ψ(G(y, y, z))1/2}
= |ψ(G(y, y, z)1/2|2

= ψ2(G(y, y, z))

< G(y, y, z),

which is impossible. It shows that S has only one fixed point. �

The statement of Theorem 2.1 has been applied to a specific context, and as a
consequence, the following results have been derived.

Corollary 2.1. A map S : Z −→ Z satisfies the following condition on a complete
(Z,M, G):

G(Sη, Sζ, Sζ) ≤ ψ∗(G(η, ζ, ζ))ψ,

for all η, ζ ∈ Z. Then ∃ a unique z◦ ∈ Z such that Sz◦ = z◦.

Proof. Same as Theorem 2.1, by substituting θ = ζ. �

Corollary 2.2. A map S : Z → Z satisfies the following condition on a complete
(Z,M, G)

G(Smη, Smζ, Smθ) ≤ ψ∗(G(η, ζ, θ))ψ,

∀ η, ζ, θ ∈ Z and m ∈ N. Then ∃ a unique p ∈ Z such that Sp = p.

Proof. We derived from Theorem 2.1 that Sm has only one p such that Sp = p.
Since we have

S(p) = S(Smp) = Sm+1p = Sm(Sp),

it shows that Sp is a fixed point of Sm. By uniqueness, we get Sp = p. �
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Theorem 2.2. Suppose (Z,M, G) be a complete C∗-valued generalized metric space.
Let the map S : Z → Z satisfies

G(Sη, Sζ, Sθ) ≤ ψ∗(max {G(η, ζ, θ), G(η, Sη, Sη), G(ζ, Sζ, Sζ), G(Sη, ζ, θ)})ψ

for all η, ζ, θ ∈ Z. Then ∃ a unique q ∈ Z such that Sq = q.

Proof. Let we take one arbitrary point η◦ ∈ Z and define a sequence {ηc} by taking
ηc = Sηc−1, c = 1, 2, 3, · · ·
i.e.

η1 = Sη◦,

η2 = Sη1 = S2η◦,

η3 = Sη2 = S3η◦,

...

ηc = Sηc−1 = Scη◦.

From given contraction we have

G(ηc, ηc+1, ηc+1) = G(Sηc−1, Sηc, Sηc)

≤ ψ∗(max{G(ηc−1, ηc, ηc), G(ηc−1, ηc, ηc), G(ηc, ηc+1, ηc+1), G(ηc, ηc, ηc)})ψ
≤ ψ∗(max{G(ηc−1, ηc, ηc), G(ηc, ηc+1, ηc+1)})ψ.

If

max{G(ηc−1, ηc, ηc), G(ηc, ηc+1, ηc+1)} = G(ηc, ηc+1, ηc+1),

then

G(ηc, ηc+1, ηc+1) ≤ ψ∗(G(ηc, ηc+1, ηc+1))ψ

< G(ηc, ηc+1, ηc+1),

which is contradiction. Therefore

max{G(ηc−1, ηc, ηc), G(ηc, ηc+1, ηc+1)} = G(ηc−1, ηc, ηc),

then

G(ηc, ηc+1, ηc+1) ≤ ψ∗(G(ηc−1, ηc, ηc))ψ.

For c ∈ N,

G(ηc, ηc+1, ηc+1) = G(Sηc−1, Sηc, Sηc)

≤ ψ∗(G(ηc−1, ηc, ηc))ψ

≤ (ψ∗)2(G(ηc−2, ηc−1, ηc−1))ψ2

≤ (ψ∗)3(G(ηc−3, ηc−2, ηc−2))ψ3

...

G(ηc, ηc+1, ηc+1) ≤ (ψ∗)c(G(η◦, η1, η1))ψc.

The same argument can be found in Theorem 2.1, and it is easy to find that {ηc}
is a G-Cauchy in Z. As Z is complete, then {ηc} is G-convergent to some q ∈ Z.
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For existence of fixed point we have

G(q, q, Sq) ≤ G(q, q, ηc) +G(ηc, ηc, Sq)

≤ G(q, q, ηc) +G(Sηc−1, Sηc−1, Sq)

≤ G(q, q, ηc) + ψ∗(max{G(ηc−1, ηc−1, q), G(ηc−1, Sηc−1, Sηc−1), G(ηc−1, Sηc−1, Sηc−1)

G(Sηc−1, ηc−1, q)})ψ
≤ G(q, q, ηc) + ψ∗(max{G(ηc−1, ηc−1, q), G(ηc−1, ηc, ηc), G(ηc−1, ηc, ηc), G(ηc, ηc−1, q)})ψ
≤ G(q, q, ηc) + ψ∗(max{G(ηc−1, ηc−1, q), G(ηc−1, ηc, ηc), G(ηc, ηc−1, q)})ψ.

Case 1. If

max{G(ηc−1, ηc−1, q), G(ηc−1, ηc, ηc), G(ηc, ηc−1, q))} = G(ηc−1, ηc, ηc),

then

G(q, q, Sq) ≤ G(q, q, ηc) + ψ∗(G(ηc−1, ηc, ηc))ψ

< G(q, q, ηc) +G(ηc−1, ηc, ηc).

By taking c→ +∞, we conclude that G(q, q, Sq) = 0, and thus Sq = q.

Case 2. If

max{G(ηc−1, ηc−1, q), G(ηc−1, ηc, ηc), G(ηc, ηc−1, q))} = G(ηc−1, ηc−1, q),

then

G(q, q, Sq) ≤ G(q, q, ηc) + ψ∗(G(ηc−1, ηc−1, q))ψ

< G(q, q, ηc) +G(ηc−1, ηc−1, q).

By taking c→ +∞, we conclude that G(q, q, Sq) = 0, and thus Sq = q.

Case 3. If

max{G(ηc−1, ηc−1, q), G(ηc−1, ηc, ηc), G(ηc, ηc−1, q))} = G(ηc, ηc−1, q),

then

G(q, q, Sq) ≤ G(q, q, ηc) + ψ∗(G(ηc, ηc−1, q))ψ

< G(q, q, ηc) +G(ηc, ηc−1, q)

≤ G(q, q, ηc) +G(ηc, ηc−1, ηc−1) +G(ηc−1, ηc−1, q).

Letting c → +∞, we have G(q, q, Sq) = 0, and thus Sq = q. In all three cases we
deduced that Sq = q. Suppose r be other fixed point of S, then

G(q, r, r) = G(Sq, Sr, Sr),

≤ ψ∗(max{G(q, r, r), G(q, Sq, Sq), G(r, Sr, Sr), G(Sq, r, r)})ψ
≤ ψ∗(max{G(q, r, r), G(q, q, q), G(r, r, r), G(q, r, r)})ψ
= ψ∗(G(q, r, r))ψ

< G(q, r, r),

which is impossible. This shows that S has only one fixed point. �

The statement of Theorem 2.2 has been applied to a specific context, and as a
consequence, the following results have been derived.
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Corollary 2.3. A map S : Z → Z satisfies the following condition on a complete
(Z,M, G):

G(Sη, Sζ, Sθ) ≤ k max{G(η, ζ, θ), G(η, Sη, Sη), G(ζ, Sζ, Sζ), G(Sη, ζ, θ)}

∀ η, ζ, θ ∈ Z and k ∈ [0, 1) . Then ∃ a unique p ∈ Z such that Sp = p.

Proof. Define ψ : R+ → R+ by ψ(σ) = kσ. Then clearly ψ is a nondecreasing map
so that limn→+∞ ψn(t) = 0, ∀ t > 0. Then,

G(Sη, Sζ, Sθ) ≤ ψ∗(max{G(η, ζ, θ), G(η, Sη, Sη), G(ζ, Sζ, Sζ), G(Sη, ζ, θ)})ψ

for all η, ζ, θ ∈ Z. The proof for the statement being discussed is identical to the
proof provided for Theorem 2.2. �

Corollary 2.4. A map S : Z → Z satisfies the following condition on a complete
(Z,M, G):

G(Sη, Sζ, Sζ) ≤ ψ∗(max{G(η, ζ, ζ), G(η, Sη, Sη), G(ζ, Sζ, Sζ), G(Sη, ζ, ζ)})ψ

for all η, ζ ∈ Z. Then ∃ a unique p ∈ Z such that Sp = p.

Proof. Theorem 2.2 provides proof, by substituting θ = ζ. �

3. Application to integral equation

As we know that integral equations have a lot of applications in applied sciences
(see, for example, Bohner et al. [37]). In this part, we derive sufficient conditions
for the solutions of integral equation.

Let W = L∞(E) and H = L2(E), where E is Lebesgue measurable set. By L(H)
we denote the set of bounded linear operators on Hilbert space H. Clearly L(H) is
a C∗− algebra with the usual operator norm. Define G : W ×W ×W → L(H), by

G(f, g, h) = π|f−g| + π|g−h| + π|h−f | (f, g, h ∈W ), (7)

where πh : H → H is the multiplication operator defined by

πh(ϕ) = h.ϕ, (8)

for ϕ ∈ H. Then G is a C∗− algebra-valued generalized metric and (W,L(H), G)
is a complete C∗− algebra-valued generalized metric space. Consider the integral
equation

η(t) = g(t) +

∫
E

Q(t, s, η(s))ds, t ∈ E, (9)

here Q : E × E ×R→ R) and g ∈ L∞(E). Define T : W →W by

Tη(t) = g(t) +

∫
E

Q(t, s, η(s))ds, t ∈ E.

Theorem 3.1. We suppose that the following conditions hold:

(A1) there exists a continuous function ϕ : E × E → R and k ∈ (0, 1) such that

|Q(t, s, u)−Q(t, s, v)) ≤ k|ϕ(t, s)(u− v)|

for t, s ∈ E and u, v ∈ R,
(A2) sup

t∈E

∫
E
|ϕ(t, s)|ds ≤ 1.

Then the integral equation has a unique solution x∗ in L∞(E).
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Proof. Set M = kI, then M ∈ L(H) and ‖M‖ = k < 1. For any h ∈ H,

‖d(Tη, Tζ)‖+ ‖d(Tζ, Tθ)‖+ ‖d(Tθ, Tη)‖
= sup
‖h‖=1

(π|Tη−Tζ|, h) + sup
‖h‖=1

(π|Tζ−Tθ|, h) + sup
‖h‖=1

(π|Tθ−Tη|, h)

≤ sup
‖h‖=1

∫
E

[∣∣∣∣ ∫
E

(Q(t, s, η(s))−Q(t, s, ζ(s))ds)

∣∣∣∣]h(t)h(t)dt

+ sup
‖h‖=1

∫
E

[∣∣∣∣ ∫
E

(Q(t, s, ζ(s))−Q(t, s, θ(s))ds)

∣∣∣∣]h(t)h(t)dt

+ sup
‖h‖=1

∫
E

[∣∣∣∣ ∫
E

(Q(t, s, θ(s))−Q(t, s, η(s))ds)

∣∣∣∣]h(t)h(t)dt

≤ sup
‖h‖=1

∫
E

[ ∫
E

|Q(t, s, η(s))−Q(t, s, ζ(s))|ds)
]
|h(t)|2dt

+ sup
‖h‖=1

∫
E

[ ∫
E

|Q(t, s, ζ(s))−Q(t, s, θ(s))|ds)
]
|h(t)|2dt

+ sup
‖h‖=1

∫
E

[ ∫
E

|Q(t, s, θ(s))−Q(t, s, η(s))|ds)
]
|h(t)|2dt

≤ sup
‖h‖=1

∫
E

[ ∫
E

|kϕ(t, s)(η(s)− ζ(s)|ds
]
|h(t)|2dt

+ sup
‖h‖=1

∫
E

[ ∫
E

|kϕ(t, s)(ζ(s)− θ(s)|ds
]
|h(t)|2dt

+ sup
‖h‖=1

∫
E

[ ∫
E

|kϕ(t, s)(θ(s)− η(s)|ds
]
|h(t)|2dt

≤ k sup
‖h‖=1

∫
E

[ ∫
E

|ϕ(t, s)|ds
]
|h(t)|2dt.‖η − ζ‖∞

+ k sup
‖h‖=1

∫
E

[ ∫
E

|ϕ(t, s)|ds
]
|h(t)|2dt.‖ζ − θ‖∞

+ k sup
‖h‖=1

∫
E

[ ∫
E

|ϕ(t, s)|ds
]
|h(t)|2dt.‖θ − η‖∞

≤ k sup
t∈E

∫
E

|ϕ(t, s)|ds. sup
‖h‖=1

∫
E

|h(t)|2dt.‖η − ζ‖∞

+ k sup
t∈E

∫
E

|ϕ(t, s)|ds. sup
‖h‖=1

∫
E

|h(t)|2dt.‖η − ζ‖∞

+ k sup
t∈E

∫
E

|ϕ(t, s)|ds. sup
‖h‖=1

∫
E

|h(t)|2dt.‖η − ζ‖∞

≤ k‖η − ζ‖∞ + k‖ζ − θ‖∞ + k‖θ − η‖∞,
≤ ‖M‖‖d(η, ζ)‖∞ + ‖M‖‖d(ζ, θ)‖∞ + ‖M‖‖d(θ, η)‖∞

but ‖M‖ < 1, by taking ψ(t) = kt, from Theorem 2.1 the integral equation has a
unique solution η∗ in L∞(E). �
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[39] S. Hussain, M. Sarwar, C. Tunç, Fixed point theorems for multi-valued generalized contrac-
tion in b-metric spaces. J. Math. Anal. 9 (2018), no. 2, 158166.
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