
Journal of Mathematical Analysis

ISSN: 2217-3412, URL: www.ilirias.com/jma

Volume 14 Issue 1 (2023), Pages 1-17

https://doi.org/10.54379/jma-2023-1-1

IDENTIFYING THE SOURCE TERM IN A SOBOLEV-TYPE

EQUATION BY OPTIMIZATION METHOD

ABDELKADIR SOUDANI, KHALED SAOUDI, ABDELDJALIL CHATTOUH & ABDELLAH MENASRI

Abstract. This paper is devoted to the study of an inverse problem of re-
covering a space-dependant source term in a Sobolev-type equation from final

measurement data. The aim of this work is twofold, first, to establish some

results concerning the stability and local uniqueness of the solution which is
done using the optimal control framework, and second, to design an efficient

algorithm based on the Landweber iteration method for the numerical identi-

fication of the unknown source term. Some typical numerical experiments are
performed to verify the effectiveness and validity of the proposed algorithm.

1. Introduction

For several applications in modern sciences and engineering, it is crucial to
measure some parameters in the model that describes the physical process. The
determination of these unknown parameters from additional measurement data,
which is known as inverse problem, has received much attention.

In the present paper, we study the inverse problem of identifying a space-
dependent source term in a third order pseudoparabolic equation from the the-
oretical analysis and numerical computation angles. More precisely, we consider
the following system:

∂tu(x, t)− ∂t∆u(x, t)−∆u(x, t) = f(x), (x, t) ∈ QT := Ω× (0, T ] (1.1)

attached by initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω :,

u(0, t) = u(1, t) = 0, t ∈ [0, T ],
(1.2)

where Ω := (0, 1), T > 0 represents a final time, the initial data u0(x) is a given
smooth function, and the source term f(x) is an unknown source term in the
equation (1.1). Given an overspecified condition at the final time, that is,

u(x, T ) = g(x), x ∈ Ω, (1.3)
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where the given function g is a known function that satisfies the homogeneous
Dirichlet boundary conditions. Then the inverse problem to be investigated is to
determine the pair of functions {u, f} satisfying (1.1)-(1.2) from the measured data
at the final time u(·, T ).

The inverse problem of identifying unknown parameters in partial differential
equations, from overspecified data on the solution, has received considerable atten-
tion from a broad cross-section of researchers. The reason for this interest relates
to the theoretical analysis and practical applications of these problems in many
disciplines such as geophysics [4], medicine [3, 15], data assimilation [13] and so on.

Pseudo-parabolic equations from a subclass of a general equations of Sobolev
type, sometimes referred to as Sobolev-Galpern type. They are characterized by
having mixed time and space derivatives appearing in the highest-order terms of the
equation. Mathematical models relying on this type of equations arise in various
fields of mathematical physics to describe various process, we mention, fluid flow
in fissured medium, heat conduction in composite medium and propagation of long
waves of small amplitude. A variety of studies have been devoted to the forward
problem for the third-order pseudo-parabolic equations (see [1, 7, 11]).

The inverse problems for pseudo-parabolic equations have been much less in-
tensively investigated compared to parabolic problems, which can be seen from the
huge amount of papers and works devoted to studying inverse problems for parabolic
systems comparing to those devoted to pseudo-parabolic equations. Nevertheless,
several works in the literature provide some results on this kind of problem in both
aspects, theoretically and numerically. In this context, we mention some recents
works in this direction. The inverse problem of identifying a leading coefficient in
a pseudo-parabolic equation from an integral-type over-determination condition is
studied in [16, 17], where the local existence and uniqueness of strong solution are
proved. In a recent paper [2], the authors proved the existence of solutions in a
local and global time to the inverse problem of determining the right side of the
pseudo-parabolic equation with a p-Laplacian and nonlocal integral overdetermi-
nation condition. For the numerical resolution, the paper [12] address the inverse
problem of constructing numerically the time-dependent potential term in a third-
order pseudo-parabolic equation with initial and Neumann boundary conditions.

Our aim in this paper is to discuss the problem of recovering the source term f
in the pseudo-parabolic equation (1.1) from the theoretical analysis and numerical
computation angles. Apart from the aforementioned works, we follow in this paper
a methodology which initially used for source identification problems for parabolic
systems [8, 18]. This method is based on optimal control framework, the basic idea
is to transform the inverse source problem into an optimization problem, and then
take the minimizer of an adequate cost functional as the general solution. Then,
the uniqueness and stability results are established with the aid of a first-order
necessary optimality condition satisfied by the optimal solution.

The brief description of our main result is as follows: Let u and ũ be two solutions
of (1.1) with the source terms f and f̃ respectively. Then, for all T > 0 there exists
a positive constant C > 0 satisfying

∥f − f̃∥L2(Ω) ≤ C∥g − g̃∥L2(Ω),

where g and g̃ are final observation data, that is u(x, T ) = g(x) and ũ(x, T ) = g̃(x).
The remainder of this paper comprises four section. In Section (2), the considered

inverse problem is transformed into an optimal control problem and the existence
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of a minimizer of the cost functional is proved. In section (3) we establish the first-
order necessary optimality. Making use of the obtained necessary conditions, we
prove the stability result in Section (4). The fifth section (5) is devoted to numerical
simulation, in which, we first design an iterative algorithm based on the Landweber
iteration method for solving numerically the source identification problem, and then
perform some numerical experiments to verify the validity of the proposed method.
Finally, further discussion and concluding remarks are offered in the last section.

2. Optimal control problem

It is well-known that the above inverse problem is ill-posed in the sense of
Hadamard (see [14] for more details), i.e., its solution depends unstably on the
data, therefore, we treat the inverse problem of recovering the coefficient f(x) in
the equation (1.1) by interpreting its solution as a minimizer of an adequate opti-
mization problem.

Let us consider the following admissible set

A =
{
f ∈ H1(Ω) : 0 < fmin ≤ f(x) ≤ fmax

}
.

Here fmin and fmax are two positive constants which stand respectively for the
lower and upper bounds for the unknown f . Now we consider the optimal control
problem of finding f̄ ∈ A the minimizer of the following problem

J (f̄) = min
f∈A

J (f), (2.1)

where

J (f) =
1

2

∫ 1

0

|u(f)(x, T )− g(x)|2 dx+
λ

2

∫ 1

0

|f |2dx, (2.2)

u is the solution of the problem (1.1) for the given source term f ∈ A and λ is a
regularization parameter.

Before considering the inverse problem (1.1)-(1.3), it is essential to provide the
well-posedness of the direct problem. It follows form the results established in [7]
that there exists a unique weak solution u to the problem (1.1) which belongs to
the space L2

(
0, T ;H1

0 (Ω)
)
. Now, we turn to derive an estimate for this solution

which we shall need further in the study of the inverse problem.

Lemma 2.1. Let u0, f ∈ L2(Ω) , then the weak solution u of the problem (1.1)
satisfies the following estimate

∥u(t)∥2H1(Ω) +

∫ t

0

∥∇u(s)∥2L2(Ω)ds ≤ C(∥f∥2L2(Ω) + ∥u0∥2L2(Ω)), 0 ≤ t ≤ T,

(2.3)

where C > 0 is a positive constant independent of any function.

Proof. Multiplying equation (1.1) by u, integrating with respect to x over Ω and
applying Green formula, we obtain

1

2

d

dt
∥u(t)∥2 + 1

2

d

dt
∥∇u(t)∥2 + ∥∇u(t)∥2 =

∫ t

0

fudx, for t ∈ (0, T ].



4 A. SOUDANI, K. SAOUDI, A. CHATTOUH & A. MENASRI

Applying Young inequality and integrating the above equation with respect to t
over [0, ξ] with ξ ∈ (0, T ], we have

∥u(t)∥21 +
∫ ξ

0

∥∇u(s)∥2ds ≤ C

(∫ ξ

0

∥f(s)∥2ds+
∫ ξ

0

∥u(s)∥2ds+ ∥u0∥2
)
,

then, by the use of Gronwall lemma we achieve the proof. □

Lemma 2.2. For any subsequence (fn) ⊂ A, such that ∥f − fn∥L1(Ω) → 0 when

n→ ∞, we have

lim
n→∞

∫ 1

0

|u (fn)(x, T )− g(x)|2 dx =

∫ 1

0

|u(f)(x, T )− g(x)|2dx

Proof. The proof is devided into three steps
Step 1 According to Lemma (2.1), there exists a positive constant C > 0 such that

∥u (fn) ∥21 +
∫ T

0

∥∇u (fn) (s)∥2ds ≤ C(∥fn∥2 + ∥u0∥2). (2.4)

The inequality (2.4) garantiates that {u (fn)} is bounded uniformly sequence in
L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Hence, there exists a subsequence, again de-
noted by {u (fn)}, such that

u (fn)⇀ u∗ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H1
0 (Ω)) (2.5)

Step 2 Prove u∗(x, t) = u(f)(x, t).
We multiply both sides of the weak formulation∫ 1

0

∂tuvdx+

∫ 1

0

∂t∇u·∇vdx+
∫ 1

0

∇u·∇vdx =

∫ 1

0

fvdx, t ∈ (0, T ], (2.6)

by a function ξ(t) ∈ C1[0, T ] with ξ(T ) = 0, and taking f = fn, we get∫ 1

0

ξ∂tu(fn)vdx+

∫ 1

0

ξ∂t∇u(fn)·∇vdx+
∫ 1

0

ξ∇u(fn)·∇vdx =

∫ 1

0

ξfnvdx,

Then by integrating with respect to t over [0, T ], we have

−
∫ T

0

∫ 1

0

∂tξu(fn)vdxdt−
∫ T

0

∫ 1

0

∂tξ∇u(fn)·∇vdxdt+
∫ T

0

∫ 1

0

ξ∇u(fn)·∇vdxdt =∫ T

0

∫ 1

0

ξfnvdxdt−
∫ 1

0

ξ(0)u0vdx−
∫ 1

0

ξ(0)∇u0∇vdx, (2.7)

Letting n→ ∞ in (2.7) and taking into account (2.5), we obtain

−
∫ T

0

∫ 1

0

∂tξu
∗vdxdt−

∫ T

0

∫ 1

0

∂tξ∇u∗ ·∇vdxdt+
∫ T

0

∫ 1

0

ξ∇u∗ ·∇vdxdt =∫ T

0

∫ 1

0

ξfvdxdt−
∫ 1

0

ξ(0)u0vdx−
∫ 1

0

ξ(0)∇u0∇vdx, (2.8)

The identity (2.8) is valid for any ξ(t) ∈ C1[0, T ], ξ(T ) = 0. Therefore, we have for
all t ∈ (0, T ]∫ 1

0

∂tu
∗vdx+

∫ 1

0

∂t∇u∗ · ∇vdx+

∫ 1

0

∇u∗ · ∇vdx =

∫ 1

0

fvdx,
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and u∗(x, 0) = u0, hence, u
∗ is a weak solution in the sense (2.6) which yields that

u∗ = u(f).
Step 3 Prove ∥u(fn)(., T )− g∥ → |u(f)(., T )− g∥ as n→ ∞.
With f = fn, we can rewritten (2.6) in the form∫ 1

0

∂t (u (fn)− g) vdx+

∫ 1

0

∂t∇ (u (fn)− g) · ∇vdx+∫ 1

0

∇ (u (fn)− g) · ∇vdx =

∫ 1

0

fnvdx−
∫ 1

0

∇g · ∇vdx

By taking v = u (fn)− g in the above formulation, we obtain

1

2

d

dt
∥u(fn)− g∥2 + 1

2

d

dt
∥∇ (u (fn)− g) ∥2 + ∥∇ (u (fn)− g) ∥2 =∫ 1

0

fn (u (fn)− g) dx−
∫ 1

0

∇g · ∇ (u (fn)− g) dx. (2.9)

We can obtain a similar relation for u(f), namely,

1

2

d

dt
∥u(f)− g∥2 + 1

2

d

dt
∥∇ (u(f)− g) ∥2 + ∥∇ (u(f)− g) ∥2 =∫ 1

0

f (u (f)− g) dx−
∫ 1

0

∇g · ∇ (u (f)− g) dx. (2.10)

From (2.9) and (2.10), we have

1

2

d

dt
∥u(fn)−u(f)∥2+

1

2

d

dt
∥∇(u(f)−g)∥2+

∫ 1

0

{
f(u(f)−g)−fn(u(fn)−g)

}
dx =

−
∫ 1

0

∇g · ∇(u(f)− u(fn))dx+

∫ 1

0

∇u(f) · ∇(u(f)− u(fn))dx+∫ 1

0

∇u(fn) · ∇(u(f)− u(fn))dx−
∫ 1

0

d

dt

[
(u(f)− g)(u(fn)− u(f))

]
dx−∫ 1

0

d

dt

[
∇(u(f) − g) · ∇(u(fn) − u(f))

]
dx. (2.11)

On the other hand, taking v = u(fn)− u(f) in (2.6) gives∫ 1

0

∂tu(f)(u(fn)− u(f))dx+

∫ 1

0

∂t∇u(f) · ∇(u(fn)− u(f))dx =

−
∫ 1

0

∇u(f) · ∇(u(fn)− u(f))dx+

∫ 1

0

f(u(fn)− u(f))dx. (2.12)

Similarly, by taking u = u (fn)− u(f) and v = u(f)− g in (2.6) on can obtain∫ 1

0

∂t(u(fn)−u(f))(u(f)−g)dx+
∫ 1

0

∂t∇(u(fn)−u(f)) ·∇(u(f)−g)dx =

−
∫ 1

0

∇(u(fn)− u(f)) · ∇(u(f)− g)dx+

∫ 1

0

(fn − f)(u(f)− g)dx.

(2.13)
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From (2.12) and (2.13), we obtain∫ 1

0

d

dt

[
(u(f)−g) (u (fn)− u(f))

]
dx+

∫ 1

0

d

dt

[
∇(u(f)−g)·∇ (u (fn)− u(f))

]
dx

=

∫ 1

0

∇g · ∇ (u(fn)− u (f)) dx− 2

∫ 1

0

∇u(f) · ∇ (u (fn)− u(f)) dx

+

∫ 1

0

f (u (fn)− u(f)) dx+

∫ 1

0

(fn − f) (u(f)− g)dx. (2.14)

Combining (2.11) and (2.14), it follows

1

2

d

dt
∥u (fn)− u(f)∥2 + 1

2

d

dt
∥∇ (u (f)− g) ∥2 +

∫ 1

0

|∇ (u (fn)− u(f))|2 dx

=

∫ 1

0

(fn − f) (u (fn)− u(f)) dx,

which implies

1

2

d

dt
∥u (fn)− u(f)∥2 + 1

2

d

dt
∥∇ (u (f)− g) ∥2

≤
∫ 1

0

(fn − f) (u (fn)− u(f)) dx,

By integrating the above inequality with respect to t over [0, T ], we obtain

1

2
∥u(fn)(t)− u(f)(t)∥2H1(Ω) ≤

∫ T

0

∫ 1

0

|fn − f | · |u (fn)− u(f)|dxdt. (2.15)

Now, from the convergence of {fn} and the weak convergence of {u (fn)}, therefore
one can easily obtain∫ T

0

∫ 1

0

|fn − f | · |u (fn)− u(f)|dxdt→ 0, as n→ ∞. (2.16)

Combining (2.15) and (2.16), we have

max
t∈[0,T ]

∥u (fn; t)− u(f ; t)∥L2(0,1) → 0, as n→ ∞. (2.17)

Let us denote

I =

∣∣∣∣∫ 1

0

u (fn) (·, T )− g(x)|2 dx−
∫ 1

0

|u(f)(·, T )− g(x)|2dx
∣∣∣∣ ,

then, using Hölder and Cauchy-Schwartz inequalities, we derive

I ≤
∫ 1

0

|u (fn) (·, T )− u(f)(·, T )| · |u (fn) (·, T ) + u(f)(·, T )− 2g|dx

≤ ∥u (fn) (·, T )− u(f)(·, T )∥ · ∥u (fn) (·, T ) + u(f)(·, T )− 2g∥ .
Take into account (2.17) we deduce that I → 0 as n→ ∞, which implies in turn

lim
n→∞

∫ 1

0

|u (fn) (x, T )− g(x)|2 dx =

∫ 1

0

|u(f)(x, T )− g(x)|2dx.

This completes the proof of the desired result. □

Now we pass to prove the existence of a minimizer f̄ ∈ A to the minimization
problem (2.1).
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Theorem 2.3. There exists a minimizer f̄ ∈ A of J (f), i.e.

J (f̄) = min
f∈A

J (f).

Proof. It can be easily seen that J is non-negative function, and thus it has the
greatest lower bound. Let {un, fn} be a minimizing sequence, i.e.,

inf
f∈A

J (f) ≤ J (fn) ≤ inf
f∈A

J (f) +
1

n
, n ∈ N∗.

Since J (fn) ≤ C we deduce from the particular structure of J that {fn} is uni-
formly bounded in H1(Ω), that is, there exists a positive constant C independent
of n such that ∥fn∥H1(Ω) ≤ C. Therefore, there exists a subsequence of {fn}, again
denoted by {fn}, weakly convergent in H1(Ω), namely,

fn ⇀ f̄ ∈ H1(Ω), as n→ ∞. (2.18)

By the Sobolev embedding theorem we obtain∥∥fn − f̄
∥∥
L1(Ω)

→ 0, as n→ ∞.

In particular, since {fn} belongs to A which is a closed subset, we have

fn → f̄ ∈ A, in L1(Ω). (2.19)

On the other hand, from (2.18) we obtain

∫ 1

0

|f̄ |2dx = lim
n→∞

∫ 1

0

fnf̄dx ≤ lim
n→∞

(∫ 1

0

|fn|2 dx
) 1

2
(∫ 1

0

|f̄ |2dx
) 1

2

.

(2.20)

By considering (2.19) it follows by applying Lemma (2.2) that

lim
n→∞

∫ 1

0

|u (fn) (x, T )− g(x)|2 dx =

∫ 1

0

|u(f̄)(x, T )− g(x)|2dx (2.21)

So, by the aid of (2.20) and (2.21), we obtain

lim
n→∞

J (fn) = lim
n→∞

1

2

∫ 1

0

|u (fn) (x, T )− g(x)|2 dx+ lim
n→∞

λ

2

∫ 1

0

|fn|2dx

≥ 1

2

∫ 1

0

∣∣u(f̄)(x, T )− g(x)
∣∣2 dx+

λ

2

∫ 1

0

|f̄ |2dx

From this observation, we obtain

min
f∈A

J (f) ≤ J (f̄) ≤ lim inf
n→∞

J (fn) ≤ min
f∈A

J (f). (2.22)

Hence

J (f̄) = min
f∈A

J (f).

Thus, f̄ is a solution of the optimization problem (2.1). □
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3. Necessary condition

Next we turn to state a first order necessary optimality condition which have to
be satisfied by each optimal control f .

Theorem 3.1. Let f be the solution of the optimal control problem (2.1)-(2.2).
Then for any h ∈ A, there exists a triple of functions (u, ψ; f) satisfying∫ 1

0

[u(x, T ; f)− g(x)]ψ(x, T )dx+ λ

∫ 1

0

f(h− f)dx ≥ 0. (3.1)


∂tu− ∂t∆u−∆u = f, (x, t) ∈ QT ,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T.

(3.2)


∂tψ − ∂t∆ψ −∆ψ = h− f, (x, t) ∈ QT ,

ψ(x, 0) = 0, 0 ≤ x ≤ 1,

ψ(0, t) = ψ(1, t) = 0, 0 ≤ t ≤ T.

(3.3)

Proof. For any h ∈ A and 0 ≤ δ ≤ 1, let us put

fδ ≡ (1− δ)f + δh ∈ A.

Then

Jδ ≡ J (fδ) =
1

2

∫ 1

0

|u (x, T ; fδ)− g(x)|2 dx+
λ

2

∫ 1

0

|fδ|2 dx. (3.4)

Let uδ be the solution to the problem (1.1) with given f = fδ. Since f is an optimal
solution, we have

dJδ

dδ

∣∣∣∣
δ=0

=

∫ 1

0

[u(x, T ; f)− g(x)]
∂uδ
∂δ

∣∣∣∣
δ=0

dx+ λ

∫ 1

0

f(h− f)dx ≥ 0. (3.5)

Let us take ũδ ≡ ∂uδ

∂δ , then by direct calculations, we find the following equation:
∂tũδ − ∂t∆ũδ −∆ũδ = h− f,

ũδ(x, 0) = 0,

ũδ(0, t) = ũδ(1, t) = 0.

(3.6)

Let us set ψ = ũδ|δ=0, then ψ satisfies
∂tψ − ∂t∆ψ −∆ψ = h− f, (x, t) ∈ Q,

ψ(x, 0) = 0, 0 ≤ x ≤ 1,

ψ(0, t) = ψ(1, t) = 0, 0 ≤ t ≤ T,

(3.7)

Regarding to the above finding, the optimality condition becomes∫ 1

0

[u(x, T ; f)− g(x)]ψ(x, T )dx+ λ

∫ 1

0

f(h− f)dx ≥ 0, (3.8)

and this achieves the proof of Theorem (4.1). □
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4. Uniqueness and stability

In this section, we aim to establish a stability result for the inverse problem of
identifying the source term f in the state equation (1.1).

Theorem 4.1. Let f1 and f2 be the minimizer of the optimal control problem
(2.1)-(2.2) corresponding to the over-specified data g1 and g2, respectively. Then,
the following estimate holds

∥f1 − f2∥L2(Ω) ≤
1√
2λ

∥g1 − g2∥L2(Ω). (4.1)

Proof. Let u1, u2 and ψ1, ψ2 are solutions of the problem (1.1) and (3.3) with source
terms f1, f2, respectively. By taking h = f2 when f = f1 and taking h = f1 when
f = f2 in the necessary optimality condition (3.1), we have

−λ
∫ 1

0

f1 (f2 − f1) dx ≤
∫ 1

0

[u1(x, T )− g1(x)]ψ1(x, T )dx, (4.2)

and

−λ
∫ 1

0

f2 (f1 − f2) dx ≤
∫ 1

0

[u2(x, T )− g2(x)]ψ2(x, T )dx. (4.3)

Setting U = u1 − u2 and Ψ = ψ1 + ψ2, then by the superposition principle we
deduce that U and Ψ satisfy the following system

∂tUt − ∂t∆U −∆U = f1 − f2, (x, t) ∈ QT ,

U(x, 0) = 0, 0 ≤ x ≤ 1,

U(0, t) = U(1, t) = 0, 0 ≤ t ≤ T,

(4.4)


∂tΨ− ∂t∆Ψ−∆Ψ = 0, (x, t) ∈ QT ,

Ψ(x, 0) = 0, 0 ≤ x ≤ 1,

Ψ(0, t) = Ψ(1, t) = 0, 0 ≤ t ≤ T,

(4.5)

It is obvious that the problem (4.5), according to the maximum principle, has only
zero-solution, therefore

ψ1(x, t) = −ψ2(x, t), (x, t) ∈ QT . (4.6)

In the other hand by noting that ψ1 is the solution to the following problem
∂tψ1 − ∂t∆ψ1 −∆ψ1 = f2 − f1,

ψ1(x, 0) = 0

ψ1(0, t) = ψ1(1, t) = 0.

then according the uniqueness property of solutions of systems (3.3) and (4.4) it
follows that

U(x, t) = −ψ1(x, t), (x, t) ∈ QT . (4.7)
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Adding the optimality conditions (4.2) and (4.3) and performing some manipula-
tions on the term by the aid of (4.6) and (4.7) we derive∫ 1

0

|f1 − f2|2 dx ≤ 1

λ

∫ 1

0

[u1(x, T )− g1]ψ1(x, T )dx+
1

λ

∫ 1

0

[u2(x, T )− g2]ψ2(x, T )dx

≤ 1

λ

∫ 1

0

U(x, T )ψ1(x, T )dx+
1

λ

∫ 1

0

(g2 − g1)ψ1(x, T )dx

≤ − 1

λ

∫ 1

0

|ψ1(x, T )|2 dx+
1

2λ

∫ 1

0

|ψ1(x, T )|2 dx+
1

2λ

∫ 1

0

|g1 − g2|2 dx

≤ 1

2λ

∫ 1

0

|g1 − g2|2 dx,

using this last inequality, we arrive at

∥f1 − f2∥2L2(Ω) ≤
1√
2λ

∥g1 − g2∥2L2(Ω)

This yields the desired result. □

5. Numerical simulation

After establishing the theoretical results in previous sections, we now aim to
developing an efficient numerical algorithm for the numerical reconstruction of the
unknown source f in the domain Ω = (0, 1) from the over-specified condition (1.3),
and also, provide some computational results.

5.1. Iterative thresholding algorithm. For computational purpose, we shall
consider in this section a general problem of (1.1)-(1.2)-(3.1), namely, find the pair
{u, f} solution of the following system

∂tu− ∂t∆u−∆u = F (x, t),

u(x, 0) = u0(x),

u(0, t) = u(1, t) = 0,

(5.1)

Let P be the parameter to data mapping, that is

P :L2(Ω) → L2(Ω)

Pf 7→ g(x) = u(x, T ),

The nonlinear operator P can be divided into two operators K and H such that

Pf = Kf +Hu0,

= u1(x, T ) + u2(x, T ),

where u1 satisfies the following equation
∂tu1 − ∂t∆u1 −∆u1 = f(x),

u1(x, 0) = 0,

u1(0, t) = u1(1, t) = 0,

(5.2)

and u2 is the solution of the following equation
∂tu2 − ∂t∆u2 −∆u2 = F (x, t),

u2(x, 0) = u0(x),

u2(0, t) = u2(1, t) = 0,

(5.3)
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We know that K is a self-adjoint linear compact operator. Therefore the inverse
problem is transformed into

Pf = g −Hu0

which can rewritten as

f = f − βK∗ (Kf − (g −Hu0)) .

Then we have the Landweber iteration defined by

fm+1 = fm − βK∗(Kfm − (g −Hu0))

= fm − βP ∗(um(x, T )− g),
(5.4)

where β is a regularization parameter and um is the solution of (1.1) with f = fm.
Now, we would like to give the specific forms of the operator K by stating the
following lemma.

Lemma 5.1. For any given ϕ ∈ L2(Ω), let v = K∗ϕ. Then v satisfies the following
system 

∂tv + ∂t∆v −∆v = ϕ, (x, t) ∈ QT ,

v(0, t) = v(1, t) = 0,

v(x, 0) = 0.

Proof. Let L be the differential operator defined as:

Lu := ∂tu− ∂t∆u−∆u,

and L∗ denotes its adjoint, that is

L∗w := −∂tw + ∂t∆w −∆w,

Suppose that u is the solution of and w satisfies the following system
L∗w = −∂tw + ∂t∆w −∆w = h(x), (x, t) ∈ QT ,

w(0, t) = w(1, t) = 0,

w(x, T ) = 0.

(5.5)

then, it follows that∫∫
QT

(w(x, t)f(x)− u(x, t)h(x)) dxdt =

∫∫
QT

(wLu− uL∗w) dxdt,

according to definition of operators L and L∗, we obtain∫∫
QT

(wLu− uL∗w) dxdt =

∫∫
QT

(w∂tu+ u∂tw) dxdt−
∫∫

QT

(u∂t∆w + w∂t∆u) dxdt+∫∫
QT

(u∆w − w∆u) dxdt := I1 + I2 + I3,

Next we evaluate the terms I1, I2 and I3 as the following

I1 =

∫∫
QT

(w∂tu+ u∂tw) dxdt

=

∫ 1

0

(∫ T

0

∂t(uw)dt

)
dx

=

∫ 1

0

(u(x, T )w(x, T )− u(x, 0)w(x, 0)) dx = 0,

(5.6)
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I2 = −
∫∫

QT

(w∂t∆u+ u∂t∆w) dxdt

=

∫∫
QT

(∇w∂t∇u+∇u∂t∇w) dxdt

=

∫ 1

0

(∫ T

0

∂t(∇u · ∇w)dt

)
dx

=

∫ 1

0

(∇u(x, T ) · ∇w(x, T )−∇u(x, 0) · ∇w(x, 0)) dx = 0,

(5.7)

I3 =

∫∫
QT

(u∆w − w∆u) dxdt

=

∫ T

0

[u∇w − w∇u]t=T
t=0 dx = 0,

(5.8)

In view of (5.6),(5.7) and (5.8) we have∫ T

0

∫ 1

0

u(x, t)h(x)dxdt =

∫ T

0

∫ 1

0

w(x, t)f(x)dxdt, (5.9)

Making the following variable transformation s = T − t, v(x, s) = w(x, T − s), it is
easily to check that v satisfies

∂sv − ∂s∆v −∆v = h(x), (x, s) ∈ QT ,

v(0, s) = v(1, s) = 0,

v(x, 0) = 0,

(5.10)

moreover, (5.9) becomes∫ T

0

∫ 1

0

u(x, s)h(x)dxds =

∫ T

0

∫ 1

0

v(x, s)f(x)dxds,

Noticing that the above identity holds for any T > 0, therefore∫ 1

0

u(x, T )h(x)dxdt =

∫ 1

0

v(x, T )f(x)dxdt, (5.11)

From (5.11) we deduce that
(
Kf, h

)
L2(Ω)

=
(
f, v
)
L2(Ω)

, consequently by the defi-

nition of K∗ it follows that v = K∗h. □

Based on the analysis above, we propose the state the following iterative algo-
rithm for the numerical reconstruction of the unknown source term.

• Step 1. Choose ε > 0 a tolerance, β > 0 regularization parameter, set
k = 0 and choose an initial value of iteration f = fk ∈ L2(Ω).

• Step 2. Solve the following initial-boundary value problem
∂tu(x, t)− ∂t∆u(x, t)−∆u(x, t) = f(x), (x, t) ∈ QT ,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T

u(x, 0) = u0(x), x ∈ Ω,

(5.12)

to obtain the solution uk where f = fk.
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Figure 1. Absolute error |f(x) − fk(x)| of the numerical recon-
struction for various iteration numbers k (in the left) and decay
rate of the error ∥f − fk∥L2 versus the number of iterations k (in
the right).

• Step 3. Solve the following initial-boundary value problem
∂tv(x, t)− ∂t∆v(x, t)−∆v(x, t) = uk(x, T )− g(x), (x, t) ∈ QT ,

v(0, t) = v(1, t) = 0, 0 ≤ t ≤ T,

v(x, 0) = 0, x ∈ Ω,

(5.13)

to obtain the solution vk.
• Step 4. Calculate the error ∥uk(·, T )− g∥.

(i) Set k = 1 and Let f1 = f0 − βv0.
(ii) If ∥u1(·, T )− g∥ < ε then stop the iteration scheme and take f = f1.
(iii) Otherwise increase k by one and go to Step 2.

By the standard theory of the Landweber iteration (see [10]), we have the following
convergence results.

Theorem 5.2. Let g ∈ L2(Ω) be the input data, and (uk, fk) be the k-th approxi-
mation in the above iterative procedure. If β satisfies 0 < β < 1

∥P∥ , then we have

lim
k→∞

∥uk(·, T )− g∥L2(Ω) = 0,

for every initial function f0 ∈ L2(Ω).

5.2. Numerical experiments. In this section we test the effectiveness of the pro-
posed algorithm by performing several numerical experiments. The stopping crite-
rion for the iteration is chosen as

∥u(·, T )− g∥ < 10−4.

Discretization for problems (5.12) and (5.13) need to be made for numerical im-
plementation. To achieve that, we apply fully-discrete schema, which is based on
Legendre-Galerkin spectral method for spatial discretization [5, 6], while for the
temporal discretization we employ Cranck-Niclson finite difference schema.
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Example. In our numerical tests, we consider the problem
∂tu(x, t)− ∂t∆u(x, t)−∆u(x, t) = π2e−t sin(πx) + f(x), (x, t) ∈ QT ,

u(x, 0) = 2 sin(πx), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T.

(5.14)
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(d) |f(x)− f365(x)|.

Figure 2. Numerical results for the identification of f(x) in
(5.14).

For the source term f(x) = π2 sin(πx), the exact solution of the direct problem
is given explicitly as

u∗(x, t) = sin(πx)(1 + e−t), (x, t) ∈ [0, 1]× [0, T ].

We begin our test by considering the identification of the source term f for dif-
ferent iteration times (denoted by k) without noise. Figure (1) (left) displays the
profile of the absolute error e(f) = |f(x) − fk(x)| as a function of space variable
x for different values of k. In the right-side of Figure (1) we plot the line of error
rate ∥f − fk∥L2(Ω) as a function of the number of iteration k.

Obviously, the main shape can be recovered with 350 iterations with satisfactory
accuracy. Indeed, after 365 iterations the identified solutions (u365f , f365) matches
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well with the desired values, which could be illustrated by comparisoning the iden-
tified solutions (u335f , f365) with the exact ones (u∗, f). As it can seen from Figure

(2) the identified solutions and the exact solutions are nearly indistinguishable.
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Figure 3. The numerical identified source term fδ (in the left)
and the corresponding state uδ(x, T ) (in the right) with different
choices of the noise level (δ = 0%, δ = 1% and δ = 5%).

Since the measured data g is usually contain some amount if noise, it is important
to consider the numerical identification with noisy data. Let us apply a noisy data
generated by adding a random perturbation, namely,

gδ(x) = g(x)[1 + δ × rand(x)], (5.15)

where δ > 0 stands for a relative noise level.
To observe the performance of our proposed algorithm, the reconstruction of f(x)

from the noisy data gδ(x) is performed with different choices of the noise level δ =
0%, δ = 1% and δ = 5% with the same settings from the previous experiment. Figure
(3) clearly shows that the reconstruction results obtained are also satisfactory.

6. Concluding remarks and discussion

In this paper, we investigate the inverse problem of identifying the source term
in a third-order pseudoparabolic equation. We first established some results con-
cerning the local uniqueness and stability by following a methodology based on
optimal control framework. After stating the theoretical results, we have design
an easy-to-implement numerical algorithm for the numerical recovering of the un-
known parameter. Several experiments are performed to assess the viability and
effectiveness of the proposed algorithm.

Based on some observation during the process of numerical computation, it is
worth noting that the regularization parameter has a central role in reducing the
implementation cost of the proposed algorithm. In fact, for the problem (5.14) we
find that for β = 280 the numerical identified solutions are match well with the
exact ones in only 3 iterations. However, for large β the the iterative procedure
will diverge whatever the number of iterations.

Another point is connected with the numerical schema used to discretize the
problem (5.12) and (5.13) in Step 2. and Step 3. respectively. Being different form
other works, we used a spectral method for the discretization of the problems to be
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solved, that is in turn reduced the number of iterations for reaching an acceptable
numerical results even for a moderate discretization parameters comparing to finite
difference schemas, for which, the number of iterations can amount to big numbers
such 1 000, 2 000, 5 000 and even 10 000. (see [9, 20]).

The aforementioned points could serve as an interesting course of research, in
particularly, studying and adapting spectral methods for the numerical resolution
of inverse identification problems, and also extending the proposed algorithm in
this paper to solve problems more complicated such as multidimentional inverse
problems, and simultaneous inversion problems. These topics are the focus of our
future works.
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