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FIXED AND BEST PROXIMITY POINTS IN PARTIAL METRIC

SPACES

VICTORY ASEM, Y. MAHENDRA SINGH

Abstract. In this paper, we extend the fixed point (respectively, best prox-
imity point) theorems for Reich type and Hardy-Rogers type contraction map-

pings in partial metric space and validate our results with non-trivial examples.

In addition, we apply our results to Fredholm integral equation.

1. Introduction

In 1994, Matthews [15] introduced the notion of partial metric as a generalization
of metric and extended the Banach contraction principle [6] in partial metric space.
Afterward, partial metrics became of great interest to many researchers (for more
details, one can check in [1], [4], [8], [9], [22], [24], etc., and references therein).

Ran and Reurings [20] gave an analogue of Banach fixed point theorem in par-
tially ordered sets and applications to linear and nonlinear matrix equations were
discussed. Nieto and López ([16], [17]) extended the results of Ran and Reurings[20]
by weakening the continuity condition and applied to solve first-order ordinary dif-
ferential equations with periodic boundary conditions. Recently there has been a
trend of discussing metric spaces equipped with partial order([5], [10], [16], [17],
[18], [20], [26], [27], etc.). Aydi et al. [5] gave some fixed point results using an ICS
mapping and involving Boyd-Wong type contractions in partially ordered metric
spaces. Choudhury et al. [10] established some coincidence point results for gener-
alized weak contractions with discontinuous control functions in metric spaces with
a partial order. Shatanawi and Postolache [26] obtained common fixed point results
for mappings satisfying nonlinear contractive conditions of a cyclic form based on
the notion of an altering distance function in ordered metric space.

On the other hand, the study of the best proximity points in the context of fixed
point theory is also interesting and some works on the best proximity point problem
can be found in [7], [19], [23], [28], etc.

The main purpose of our work is to obtain fixed point and the best proximity
point theorems for Reich type and Hardy-Rogers type contraction mappings in the
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setting of partial metric space. Our works also extend some results of Altun et al.
[2] and other similar results in the existing literature.

2. Preliminaries

In this section, we recall the following definitions and results which are directly
or indirectly related to our work. We denote R+ the set of positive real numbers
and N the set of natural numbers.

Let (X, d) be a metric space and let T : X → X be a self mapping. In 1971,
Reich [21] generalized Banach’s [6] and Kannan’s ([12], [13]) theorems by using the
following new type of contraction mapping:

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty), ∀ x, y ∈ X

where a, b, c are nonnegative and a+ b+ c < 1.

Example 2.1. Let us consider X = [0, 1] with the usual metric d, where d(x, y) =
|x − y|. Define a mapping T on X as Tx = 3x

10 for all x ∈ X. Then, we have

d(x, Tx) = 7x
10 , d(y, Ty) = 7y

10 , d(Tx, Ty) = 3
10 |x− y|. For all x, y ∈ X, we have

d(Tx, Ty) =
3

10
|x− y|

≤ 3

10

(
|x|+ |y|

)
=

3

7

( 7

10
|x|+ 7

10
|y|
)

≤3

7
|x− 3x

10
|+ 43

100
|y − 3y

10
|.

Setting b = 3
7 , c = 43

100 and 0 ≤ a < 99
700 , then a+ b+ c < 1. Thus, we have

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty), for all x, y ∈ X

and hence T is a Reich type contraction mapping.

Example 2.2. Let (X, d) be a metric space where X = [0, 1] and d(x, y) = |x− y|.
Define T on X as

Tx =

{
1
2 , x ∈ [0, 1)
1
3 , x = 1

Two cases arise:
Case (i): When x, y ∈ [0, 1) or x, y = 1

d(Tx, Ty) = 0 ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty)

for nonnegative a, b, c such that a+ b+ c < 1.
Case (ii): When x ∈ [0, 1) and y = 1
d(Tx, Ty) = 1

6 and for a = 1
5 , b = 1

4 , c = 1
2 with a+ b+ c < 1

ad(x, y) + bd(x, Tx) + cd(y, Ty) = a|x− 1|+ b

∣∣∣∣x− 1

2

∣∣∣∣+ c

∣∣∣∣1− 1

3

∣∣∣∣
≥ d(Tx, Ty).

From the above two cases, we conclude that T is Reich type contraction mapping
but T is not continuous at x = 1.
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In 1973, Hardy and Rogers [11] gave a generalization of fixed point theorem of
Reich [21] using the following contraction mapping:

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(x, Ty) + fd(y, Tx),

∀ x, y ∈ X, where a, b, c, f, e are nonnegative and a+ b+ c+ e+ f < 1.
Further, in 2010 Altun et al. [2] proved the following Reich’s [21] and Hardy-

Rogers’s [11] theorems in partial metric space.

Theorem 2.3. [2] Let (X, p) be a complete partial metric space and let T : X → X
be a mapping such that

p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty),

∀ x, y ∈ X, where a, b, c ≥ 0 and a+ b+ c < 1. Then T has a unique fixed point.

Theorem 2.4. [2] Let (X, p) be a complete partial metric space and let T : X → X
be a mapping such that

p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty) + dp(x, Ty) + ep(y, Tx),

∀ x, y ∈ X, where a, b, c, d, e ≥ 0 and if d ≥ e, then a+ b+ c+ d+ e < 1, if d < e,
then a+ b+ c+ d+ 2e < 1. Then T has a unique fixed point.

Definition 2.5. [15] A partial metric on a nonempty set X is a function p :
X ×X → R+ such that ∀ x, y, z ∈ X:
(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y)(equality);
(p2) p(x, x) ≤ p(x, y)(small self-distance);
(p3) p(x, y) = p(y, x)(symmetry);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)(triangularity).

The pair (X, p) is called a partial metric space. For partial metric, self distance
need not be zero and if self distance is zero, a partial metric reduces to a metric.
But p(x, y) = 0 implies x = y by (p1) and (p2).

Example 2.6. [15] Let X = R+ and define p : X×X → R+ as p(x, y) = max{x, y}.
Then p is a partial metric.

Example 2.7. [15] Let X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) =
max{b, d} −min{a, c}. Then p is a partial metric.

Example 2.8. [14] Let d be a metric and p a partial metric on a nonempty set X
respectively. Define pi : X ×X → R+, i ∈ {1, 2, 3} as

p1(x, y) = d(x, y) + p(x, y);

p2(x, y) = d(x, y) + max{ω(x), ω(y)};
p3(x, y) = d(x, y) + a;

where ω : X → R+ is an arbitrary function and a ≥ 0. Then pi, i ∈ {1, 2, 3} is a
partial metric on X.

Example 2.9. Let (X, p) be a partial metric space on a nonempty set X and k be a
non-zero positive real number. Then pk : X×X → R+ defined as pk(x, y) = kp(x, y)
is also a partial metric on X.
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Example 2.10. Let X = R and define p : X ×X → R+ as

p(x, y) = |x− y|+ |x|+ |y|.

We show that p is a partial metric. Clearly, (p1) and (p3) of Definition 2.5 hold.
To show (p2) and (p4), we have

p(x, x) = |x|+ |x| = |x− y + y|+ |x| ≤ |x− y|+ |y|+ |x| = p(x, y).

This shows that (p2) is satisfied. Also we have

p(x, y) = |x− y|+ |x|+ |y|
= |x− z + z − y|+ |x|+ |y|
≤ |x− z|+ |z − y|+ |x|+ |y|
= |x− z|+ |x|+ |z|+ |z − y|+ |z|+ |y| − 2|z|
= p(x, z) + p(z, y)− p(z, z).

Thus (p4) is satisfied.

Note that every partial metric p on a non-empty set X generates a topology
τ(p) on X, whose base is a family of open balls, {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} ∀ x ∈ X (for more details, we refer to [9]
and [15]).

Definition 2.11. [15] (i) A sequence {xn} in a partial metric space (X, p) con-
verges to some x ∈ X if and only if p(x, x) = lim

n→∞
p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is said to be a Cauchy sequence
if lim
n,m→∞

p(xn, xm) exists and is finite.

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence in
X converges with respect to τ(p) to a point x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm).

(iv) Let (X, p) be a partial metric space and T : X → X be a mapping on X. T is
said to be continuous at x ∈ X if for each ε > 0 there exists δ > 0 such that

T (Bp(x, δ)) ⊆ Bp(Tx, ε).

Let (X, p) be a partial metric space. Define dp : X ×X → R+ as

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) ∀ x, y ∈ X.

Then (X, dp) is a metric space. This shows that every partial metric on a nonempty
set induces a metric [15].

Proposition 2.12. [15] Let (X, p) be a partial metric space and (X, dp) be the
corresponding induced metric space. Also let {xn} be a sequence in X. Then
(i) {xn} converges in (X, dp) with respect to τ(dp) =⇒ {xn} converges with respect
to τ(p).
(ii) {xn} is Cauchy in (X, p) if and only if {xn} is Cauchy in (X, dp).
(iii) (X, p) is complete if and only if (X, dp) is complete.
Moreover,

lim
n→∞

dp(x, xn) = 0 ⇐⇒ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).
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Definition 2.13. [3] A sequence {xn} in a partial metric space (X, p) converges
to c ∈ X if for each ε > 0 there exists N ∈ N such that

p(xn, c)− p(c, c) < ε and

p(xn, c)− p(xn, xn) < ε ∀ n ≥ N.

Let A and B be two nonempty subsets of a partial metric space (X, p). Then,
the distance between A and B is given as

p(A,B) = inf{p(a, b) : a ∈ A and b ∈ B}.

Definition 2.14. ([7], [28]) For a mapping T : A→ B an element x ∈ A is called
a best proximity point of T if p(x, Tx) = p(A,B).

Example 2.15. Let X = R+ be a partial metric space with partial metric p(x, y) =
max{x, y}, ∀ x, y ∈ X and define T : A = [1, 2]→ B = [0, 1] by Tx = x

3 . Then 1 is

a best proximity point of T as p(1, T1) = p(1, 13 ) = p(A,B).

Lemma 2.16. [28] Let (X, p) be a partial metric space with partial metric p. If
{xn} and {yn} be sequences in X such that xn → x ∈ X and yn → y ∈ X, then
p(xn, yn)→ (x, y) as n→∞.

3. Fixed point theorems in partially ordered partial metric space

In this section, inspired by Ran and Reurings [20] (respectively, Nieto and López
[16, 17]), we extend Theorem 2.3 and Theorem 2.4 of Altun et al. [2] in partially
ordered partial metric space.

Let (X,�) be a partially ordered set and p be a partial metric on X. Then
(X,�, p) is called a partially ordered partial metric space. Two elements x and y
in X are said to be comparable if either x � y or y � x. A mapping T : X → X is
said to monotone nondecreasing if x � y implies Tx � Ty, x, y ∈ X.

Theorem 3.1. Let (X,�, p) be a complete partially ordered partial metric space.
Let T be a continuous and monotone nondecreasing self mapping on X such that

p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty) + dp(x, Ty) + ep(y, Tx), (3.1)

∀x, y ∈ X with x � y, where a, b, c, d, e ≥ 0 and if d ≥ e, then a+ b+ c+ d+ e < 1,
if d < e, then a+ b+ c+ d+ 2e < 1. Further, if there exists x0 ∈ X with x0 � Tx0,
then T has a fixed point.

Proof. Let x0 ∈ X such that x0 � Tx0. Since T is monotone nondecreasing, then
we have

Tx0 � T 2x0

T 2x0 � T 3x0

...

Tnx0 � Tn+1x0.

Inductively, we obtain

x0 � Tx0 � T 2x0 � ... � Tnx0 � Tn+1x0 � ...

Thus, we construct a sequence {xn} in X such that xn+1 = Txn = Tn+1x0, for all
n ≥ 0. If xn0+1 = xn0

i.e., Txn0
= xn0

, for some n0 ≥ 0, then xn0
is a fixed point
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of T . Assume that xn+1 6= xn, for all n ≥ 0. Since xn � xn+1, for all n ≥ 0, then
using (3.1), we have

p(xn+1, xn) =p(Txn, Txn−1) (3.2)

≤ap(xn, xn−1) + bp(xn, Txn) + cp(xn−1, Txn−1)

+ dp(xn, Txn−1) + ep(xn−1, Txn)

=ap(xn, xn−1) + bp(xn, xn+1) + cp(xn−1, xn)

+ dp(xn, xn) + ep(xn−1, xn+1)

≤(a+ c)p(xn, xn−1) + bp(xn, xn+1)

+ dp(xn, xn) + e[p(xn−1, xn) + p(xn, xn+1)− p(xn, xn)]

=(a+ c+ e)p(xn, xn−1) + (b+ e)p(xn, xn+1)

+ (d− e)p(xn, xn).

Since, by (p2), we have

p(xn, xn) ≤ p(xn, xn−1) and p(xn, xn) ≤ p(xn, xn+1). (3.3)

If d ≥ e, then using (3.2), and (3.3), we have

p(xn+1, xn) ≤ max
{a+ c+ d

1− b− e
,
a+ c+ e

1− b− d

}
p(xn, xn−1) (3.4)

for all n ≥ 1. Similarly, for all n ≥ 1 if d < e, then by omitting the −ve term from
(3.2) and using (3.3), we have

p(xn+1, xn) ≤ max
{a+ c+ d+ e

1− b− e
,

a+ c+ e

1− b− d− e

}
p(xn, xn−1). (3.5)

Setting

k =

max
{
a+c+d
1−b−e ,

a+c+e
1−b−d

}
, if d ≥ e;

max
{
a+c+d+e
1−b−e , a+c+e

1−b−d−e

}
, if d < e.

Clearly, k ∈ [0, 1) and hence from (3.4) and (3.5), we obtain

p(xn+1, xn) ≤ kp(xn, xn−1) ≤ knp(x1, x0). (3.6)

Also, we have

dp(xn+1, xn) =2p(xn+1, xn)− p(xn+1, xn+1)− p(xn, xn)

≤2p(xn+1, xn)

≤2knp(x1, x0).
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Now, we show that {xn} is a Cauchy sequence in (X, dp). Let m,n ∈ N,m > n.

dp(xm, xn) ≤dp(xm, xm−1) + dp(xm−1, xn)

≤dp(xm, xm−1) + dp(xm−1, xm−2) + dp(xm−2, xn)

≤dp(xm, xm−1) + dp(xm−1, xm−2) + dp(xm−2, xm−3)

+ ...+ dp(xn+1, xn)

≤2(km−1 + km−2 + km−3 + ...+ kn)p(x1, x0)

≤2
kn(1− km−n)

1− k
p(x1, x0)

≤2
kn

1− k
p(x1, x0).

This shows that {xn} is a Cauchy sequence in the metric space (X, dp), so we have
limm,n→∞ dp(xm, xn) = 0. Hence the sequence {xn} is also a Cauchy sequence in
(X, p) i.e., limm,n→∞ p(xm, xn) exists and finite.

Since (X, p) is complete, so the sequence {xn} converges in the metric space
(X, dp) i.e., limn→∞ dp(xn, ζ) = 0 and hence p(ζ, ζ) = limn→∞ p(xn, ζ).

Also, from Proposition 2.12 (iii), we have

lim
n→∞

dp(xn, ζ) = 0 ⇐⇒ p(ζ, ζ) = lim
n→∞

p(xn, ζ) = lim
m,n→∞

p(xm, xn). (3.7)

From (3.3) and (3.6) and letting n→∞, we obtain

lim
n→∞

p(xn, xn) = 0 = lim
n→∞

p(xn+1, xn). (3.8)

On the other hand, we have

dp(xm, xn) = 2p(xm, xn)− p(xm, xm)− p(xn, xn).

Letting m,n→∞ in the above and using (3.8), we obtain

lim
m,n→∞

p(xm, xn) = 0.

Thus, from (3.7), we obtain

p(ζ, ζ) = lim
n→∞

p(xn, ζ) = lim
m,n→∞

p(xm, xn) = 0.

Finally, we show ζ is a fixed point of T . By continuity of T at ζ, given ε >
0, there exists δ > 0 such that T (Bp(ζ, δ)) ⊆ Bp(Tζ, ε). Since p(ζ, ζ) = 0 =
limn→∞ p(ζ, xn), there exists K ∈ N such that

p(xn, ζ) < p(ζ, ζ) + δ, ∀ n ≥ K.

This implies xn ∈ Bp(ζ, δ), ∀ n ≥ K. Thus, we obtain

Txn ∈ T (Bp(ζ, δ)) ⊆ Bp(Tζ, ε)
=⇒ p(Txn, T ζ) < p(Tζ, Tζ) + ε, ∀ n ≥ K.

Therefore, limn→∞ p(Txn, T ζ) = p(Tζ, Tζ). Now, we have

p(ζ, T ζ) ≤ p(ζ, Txn) + p(Txn, T ζ)− p(Txn, Txn)

≤ p(ζ, Txn) + p(Txn, T ζ).
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Letting n→∞, we have

p(ζ, T ζ) ≤p(Tζ, Tζ)

≤ap(ζ, ζ) + bp(ζ, T ζ) + cp(ζ, T ζ) + dp(ζ, T ζ)

+ ep(ζ, T ζ)

=⇒ (1− b− c− d− e)p(ζ, T ζ) ≤ 0.

This implies Tζ = ζ i.e. ζ is a fixed point of T . �

Theorem 3.2. In the above Theorem 3.1, omitting the continuity of T and enclose
the following condition:
For an increasing sequence {xn} with xn → ζ in X, then xn � ζ, ∀ n.
Then T has a fixed point.

Proof. Follow the same steps as the proof of Theorem 3.1 up to getting the Cauchy
sequence {xn} converging to ζ with

p(ζ, ζ) = lim
n→∞

p(xn, ζ) = lim
n,m→∞

p(xm, xn) = 0.

From (3.1), we have

p(ζ, T ζ) ≤p(ζ, Txn) + p(Txn, T ζ)− p(Txn, Txn)

≤p(ζ, xn+1) + p(Txn, T ζ)

≤p(ζ, xn+1) + ap(xn, ζ) + bp(xn, Txn) + cp(ζ, T ζ)

+ dp(xn, T ζ) + ep(ζ, Txn)

≤p(ζ, xn+1) + ap(xn, ζ) + bp(xn, xn+1) + cp(ζ, T ζ)

+ dp(xn, ζ) + dp(ζ, T ζ) + ep(ζ, xn+1).

Letting n→∞, we have

p(ζ, T ζ) ≤ (c+ d)p(ζ, T ζ)

=⇒ (1− c− d)p(ζ, T ζ) ≤ 0.

This shows Tζ = ζ i.e. ζ is a fixed point of T . �

Theorem 3.3. To the hypothesis of Theorem 3.1 and 3.2, subsume the following
hypothesis:
(H): Every pair of fixed points of T are comparable.
Then T has a unique fixed point.

Proof. Let T has two fixed points ζ and η. By hypothesis (H), ζ and η are compa-
rable i.e. ζ � η or η � ζ.
Now, from (3.1), we have

p(ζ, η) =p(Tζ, Tη)

≤ap(ζ, η) + bp(ζ, T ζ) + cp(η, Tη) + dp(ζ, Tη) + ep(ζ, Tη)

≤ap(ζ, η) + bp(ζ, ζ) + cp(η, η) + dp(ζ, η) + ep(ζ, η)

≤ap(ζ, η) + dp(ζ, η) + ep(ζ, η).

This implies that (1 − a − d − e)p(ζ, η) ≤ 0 and hence p(ζ, η) = 0. Therefore,
ζ = η. �
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We have the following Reich type corollaries from Theorem 3.1 (respectively, 3.2
and 3.3).

Corollary 3.4. Let (X,�, p) be a complete partially ordered partial metric space.
Let T be a continuous and nondecreasing self mapping on X such that there exists
nonnegative numbers a, b, c with a+ b+ c < 1 satisfying

p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty), ∀ x, y ∈ X with x � y.

If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

Corollary 3.5. In the above Corollary 3.4, exclude the continuity of T and enclose
the following condition:
For an increasing sequence {xn} with xn → ζ in X, then xn � ζ, ∀ n.
Then T has a fixed point.

Corollary 3.6. To the hypothesis of Corollary 3.4 and 3.5 subsume the following
hypothesis:
(H): Every pair of fixed points of T are comparable.
Then T has a unique fixed point.

Example 3.7. Let X = [0,∞), � the natural ordering of real numbers and p(x, y) =
max{x, y}. Then (X,�, p) is a complete partially ordered partial metric space. De-
fine T : X → X as

Tx =

{
0, 0 ≤ x < 2,
x+2
5 , x ≥ 2.

T is a nondecreasing mapping. Consider the following cases:
Case I: If x, y ∈ [0, 2) and x ≤ y, then

p(Tx, Ty) = 0 ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty)

for any nonnegative numbers a, b, c with a+ b+ c < 1.
Case II: If x, y ≥ 2 and x ≤ y, then

p(Tx, Ty) = max
{x+ 2

5
,
y + 2

5

}
=
y + 2

5

≤ y + y

5
≤ 2

5
y

≤ ap(x, y) + bp(x, Tx) + cp(y, Ty),

where a = 2
5 , b = c = 0 and p(x, y) = y.

Case III: If x ∈ [0, 2)andy ≥ 2, then

p(Tx, Ty) = max
{

0,
y + 2

5

}
=
y + 2

5

≤ y + y

5
≤ ap(x, y) + bp(x, Tx) + cp(y, Ty),

where a = 2
5 , b = c = 0, p(x, y) = y and p(x, Tx) = x. Thus, T satisfies all the

condition of Corollary 3.6 and 0 is the unique fixed point of T .
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4. Best proximity point theorems

Let (X, p) be a partial metric space and A,B be nonempty subsets of X. Let
A0 and B0 denote the following sets:

A0 = {x ∈ A : p(x, y) = p(A,B), for some y ∈ B};
B0 = {y ∈ B : p(x, y) = p(A,B), for some x ∈ A}.

Definition 4.1. ([25], [28]) Let (X, p) be a partial metric space and A,B be two
nonempty subsets of X with A0 6= ∅. The pair (A,B) is said to have the P -property
if and only if

p(x1, y1) = p(A,B)
p(x2, y2) = p(A,B)

}
=⇒ p(x1, x2) = p(y1, y2),

x1, x2 ∈ A0 and y1, y2 ∈ B0.

Lemma 4.2. ([8], [28]) B0 is closed with respect to (X, dp).

Lemma 4.3. ([8], [28]) T (A0) ⊆ B0 for a mapping T : A→ B.

Definition 4.4. Let (X, p) be a partial metric space and A,B be nonempty subsets
of X. A mapping T : A → B is said to be Reich type contraction mapping if it
satisfies:

p(Tx, Ty) ≤ ap(x, y) + b[p(x, Tx)− p(A,B)] + c[p(y, Ty)− p(A,B)], (4.1)

∀ x, y ∈ X, where a, b, c ≥ 0 and a+ b+ c < 1.

Theorem 4.5. Let A and B be nonempty closed subsets of a complete partial metric
space (X, p) with A0 6= ∅. Let T : A → B be a continuous Reich type contraction
mapping satisfying the following conditions:
(i) T (A0) ⊆ B0;
(ii) the pair (A,B) has the P -property.
Then T has a unique best proximity point.

Proof. By Lemma 4.2, B0 is closed with respect to (X, dp). Also, by Lemma 4.3

T (A0) ⊆ B0.
Now we consider an operator PA0 : T (A0)→ A0 defined by

PA0
y = {x ∈ A0 : p(x, y) = p(A,B)}.

Let x1, x2 ∈ A0. As the pair (A,B) has the P -property, we get

PA0Tx1 = {u ∈ A0 : p(u, Tx1) = p(A,B)}
PA0Tx2 = {v ∈ A0 : p(v, Tx2) = p(A,B)}

=⇒ p(Tx1, Tx2) = p(u, v).

Now, we have

p(PA0
Tx1, PA0

Tx2) = p(Tx1, Tx2)

≤ap(x1, x2) + b[p(x1, Tx1)− p(A,B)] + c[p(x2, Tx2)− p(A,B)]

≤ap(x1, x2) + b[p(x1, PA0Tx1) + p(PA0Tx1, Tx1)− p(A,B)]+

c[p(x2, PA0Tx2) + p(PA0Tx2, Tx2)− p(A,B)].

This shows that PA0
T : A0 → A0 is a continuous Reich type contraction mapping on

a complete partial metric subspaceA0. By Theorem 2.3 , we conclude that PA0
T has
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a unique fixed point x ∈ A0 i.e. PA0
Tx = x. This shows that p(x, Tx) = p(A,B)

i.e., x is a unique best proximity point of T . �

Example 4.6. Let X = (0,∞) and A = [2,∞), B = [1,∞) be subsets of X
with partial metric p(x, y) = max{x, y}. Define T : A → B as T (x) = x

2 . Then
p(A,B) = 2, A0 = {2} and B0 = [1, 2]. Also T (A0) ⊆ B0. Now, for x, y ∈ A

T (x) = [1,∞) = B, p(Tx, Ty) = 1, p(x, Tx) = p(y, Ty) = 2 and p(x, y) = 2.

We have

p(Tx, Ty) ≤ ap(x, y) + b[p(x, Tx)− p(A,B)] + c[p(y, Ty)− p(A,B],

for nonnegative a = 3
5 , b = 0, c = 1

5 with a + b + c < 1. Thus, T satisfies the
conditions of Theorem 4.5 and 2 is the unique best proximity point of T .

Definition 4.7. Let A,B 6= ∅ be subsets of a partial metric space (X, p). A mapping
T : A→ B is said to be Hardy-Rogers type contraction mapping if T satisfies:

p(Tx, Ty) ≤ap(x, y) + b[p(x, Tx)− p(A,B)] + c[p(y, Ty)− p(A,B)]+

d[p(x, Ty)− p(A,B)] + e[p(y, Tx)− p(A,B)], ∀ x, y ∈ A.
where a, b, c, d, e ≥ 0 and if d ≥ e, then a + b + c + d + e < 1 and if d < e, then
a+ b+ c+ d+ 2e < 1.

Theorem 4.8. Let (X, p) be a complete partial metric space and A,B ⊆ X, closed
and non-empty with A0 6= ∅. Assume a continuous Hardy-Rogers type contraction
mapping T : A→ B satisfying the following conditions:
(i) TA0 ⊆ B0;
(ii) the pair (A,B) has the P -property.
Then T has a unique best proximity point.

Proof. By Lemma 4.2, B0 is closed with respect to (X, dp). Also, by Lemma 4.3

T (A0) ⊆ B0. Now we consider an operator PA0
: T (A0)→ A0 defined by

PA0
y = {x ∈ A0 : p(x, y) = p(A,B)}.

Let x1, x2 ∈ A0. As the pair (A,B) has the P -property, we get

PA0
Tx1 = {u ∈ A0 : p(u, Tx1) = p(A,B)}

PA0
Tx2 = {v ∈ A0 : p(v, Tx2) = p(A,B)}

=⇒ p(Tx1, Tx2) = p(u, v).

Now, we have

p(PA0
Tx1, PA0

Tx2) =p(Tx1, Tx2)

≤ap(x1, x2) + b[p(x1, Tx1)− p(A,B)] + c[p(x2, Tx2)−
p(A,B)] + d[p(x1, Tx2)− p(A,B)] + e[p(x2, Tx1)− p(A,B)]

≤ap(x1, x2) + b[p(x1, PA0Tx1) + p(PA0Tx1, Tx1)− p(A,B)]+

c[p(x2, PA0
Tx2) + p(PA0

Tx2, Tx2)− p(A,B)]+

d[p(x1, PA0
Tx2) + p(PA0

Tx2, Tx2)− p(A,B)]+

e[p(x2, PA0Tx1) + p(PA0Tx1, Tx1)− p(A,B)]

≤ap(x1, x2) + bp(x1, PA0Tx1) + cp(x2, PA0Tx2)+

dp(x1, PA0
Tx2) + ep(x2, PA0

Tx1).
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This shows that PA0
T : A0 → A0 is a Hardy-Rogers type contraction mapping on a

complete partial metric subspace A0. By Theorem 2.4, we conclude that PA0T has
a unique fixed point x ∈ A0 i.e. PA0Tx = x. This shows that p(x, Tx) = p(A,B)
i.e., x is a unique best proximity point of T . �

Example 4.9. Let (X, p) be a partial metric space where X = (0,∞), p(x, y) =
max{x, y} and A = [3,∞), B = [1, 2] two subsets of X. Then p(A,B) = 3, A0 =
{3} and B0 = [1, 2]. Define T : A→ B by

Tx =
x+ 1

3
.

Now T (A0) ⊆ B0 and for x, y ∈ A

Tx =

[
4

3
,∞
)
, p(Tx, Ty) =

4

3
,

p(x, Tx) = 3 = p(y, Ty) = p(x, Ty) = p(y, Tx) = p(x, y).

We have

p(Tx, Ty) ≤ap(x, y) + b[p(x, Tx)− p(A,B)] + c[p(y, Ty)− p(A,B)]+

d[p(x, Ty)− p(A,B)] + e[p(y, Tx)− p(A,B)]

for a = 5
9 , b = c = d = 1

9 , e = 0 and a+ b+ c+ d+ e = 8
9 < 1. Thus, T satisfies all

conditions of Theorem 4.8 and hence 3 is the unique bet proximity point of T .

Corollary 4.10. If A = B in Theorem 4.5 and 4.8 that is T is a self-mapping,
then T has a unique fixed point. For this case, continuity of T is not necessary.

5. Application

Here, we establish the existence of solution for a Fredholm integral equation.
Consider a Fredholm integral equation

x(t) = q(t) +

∫ β

α

K(t, s, x(s))ds, (5.1)

where t ∈ I = [α, β], K : I × I × R→ R and q : I → R are continuous functions.
Let X = C(I,R) be the space of real continuous functions defined on I. Define

p on X by

p(x, y) = max
t∈[α,β]

[
|x(t)− y(t)|+ γ

]
where γ ∈ R+.

Then, (X, p) ia a complete partial metric space. Suppose T : X → X is a self-
mapping defined by

Tx(t) = q(t) +

∫ β

α

K(t, s, x(s))ds,∀ x ∈ X and ∀ t ∈ I.

Obviously, x(t) is a solution of (5.1) if and only if it is a fixed point of T .

Theorem 5.1. Besides above conditions, consider the following hypothesis hold:
(h1) There exists a continuous function f : I × I → R+ such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ f(t, s)
[
|x(s)− y(s)|+ b

a
|x(s)− Tx(s)|+ c

a
|y(s)−

Ty(s)|+ γ

a
(a+ b+ c− 1)

]
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∀ x, y ∈ X and ∀ t, s ∈ I;

(h2) maxt∈[α,β]
∫ β
α
f(t, s)ds ≤ a

β−α , where 0 < a < 1, 0 ≤ b, c < 1 and a+ b+ c < 1.

Then, the integral equation (5.1) has a unique solution in X.

Proof. We know that (X, p) is a complete partial metric space.
Now, we show T is a Reich-type contractive mapping.

p(Tx, Ty) = max
t∈[α,β]

[
|Tx(t)− Ty(t)|+ γ

]

= max
t∈[α,β]

[∣∣∣∣ ∫ β

α

K(t, s, x(s))−
∫ β

α

K(t, s, y(s))

∣∣∣∣+ γ

]

≤ max
t∈[α,β]

[∫ β

α

|K(t, s, x(s))−K(t, s, y(s))|+ γ

]

≤ max
t∈[α,β]

[∫ β

α

f(t, s)ds
[
|x(t)− y(t)|+ b

a
|x(t)− Tx(t)|+ c

a
|y(t)− Ty(t)|

+
γ

a
(a+ b+ c− 1)] + γ

]
≤a[|x− y|+ γ] + b[|x− Tx|+ γ] + c[|y − Ty|+ γ]

≤ap(x, y) + bp(x, Tx) + cp(y, Ty)

where 0 < a < 1 and b, c are nonnegative with a+ b+ c < 1. This shows that T is a
Reich-type contractive mapping on X and hence by Corollary 4.10, T has a unique
solution. �

Example 5.2. Let (X, p) be the complete partial metric space as in Theorem 5.1.
Define T : X → X as

Tx(t) = q(t) +

∫ 1

0

K(t, s, x(s))ds, (5.2)

where K(t, s, x(s)) = t(1+s)
4 x(s) and q(t) = 19

48 t. Setting f(t, s) = t(1+s)
4 . Then∫ 1

0

f(t, s)ds =

∫ 1

0

t(1 + s)

4
ds =

3

8
t

which implies that maxt∈[0,1]
∫ 1

0
f(t, s)ds ≤ 3

8 . Then we can easily show T satisfies

all condition of Theorem 5.1 and x(t) = t
2 is a unique solution of the integral

equation (5.2).

conclusion

We discuss the fixed point and the best proximity point theorems of Reich type
and Hardy-Rogers type contraction mappings in partial metric space by generalizing
some results of Altun et al.[2]. We also give non-trivial examples and an application
to certify the achieved results. It is interesting to highlight that our result can be
further generalized using control functions.

Acknowledgments. The authors would like to thank the anonymous referee for
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