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ON I-CONVERGENCE OF SEQUENCES OF FUNCTIONS AND

UNIFORM CONJUGACY

AMAR KUMAR BANERJEE, NESAR HOSSAIN

Abstract. In this paper we introduce the notion of I∗-α-uniform equal con-

vergence and I∗-α-strong uniform equal convergence of sequences of functions

and then investigate some lattice properties of ΦI
∗-α-u.e. and ΦI

∗-α-s.u.e., the
classes of all functions which are I∗-α-uniform equal limits and I∗-α-strong

uniform equal limits of sequences of functions respectively obtained from a

class of functions Φ. We have also shown that I-exhaustiveness, I-uniform
and I-α- convergence of sequences of functions are preserved under uniform

conjugacy.

1. Introduction

The two kinds of generalizations of statistical convergence [13, 18] were intro-
duced by Kostyrko et al. [14] which was named as I and I∗-convergence based on
the structure of ideals of the set N of positive integers. As a natural consequence
over the years, some significant investigations on this convergence were studied in
many directions in different spaces [2, 3, 4, 11, 15]. Besides uniform convergence and
pointwise convergence, different types of converegence of sequences of real valued
functions were studied and their significant properties were developed analogously.
For example the ideas of discrete, equal [6, 7] (also known as quasinormal conver-
gence [5]), uniform equal, uniform discrete [16], α-convergence (in the literature,
also known as continuous convergence [19]), α-equal, α-uniform equal, α-strong
uniform equal convergence [12] were introduced by several authors. Later, the idea
of I∗-uniform discrete, I∗-uniform equal, I∗-strong uniform equal, I-strong equal
convergence of sequences of real valued functions were studied in [9, 10, 20]

In this paper we investigate some lattice properties of the classes of all func-
tions which are I∗-α-uniform equal limits and I∗-α-strong uniform equal limits
of sequences of functions following the investigations of [8]. Tian and Chen ([21])
introduced the notion of uniform conjugacy for sequences of maps. We show that
different types of I- convergence of sequences of functions are preserved under uni-
form conjugacy.
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Submitted May 11, 2022. Published September 15, 2022.
Communicated by P. Das.

12



ON I-CONVERGENCE OF SEQUENCES OF FUNCTIONS AND UNIFORM CONJUGACY 13

2. Preliminaries

Throughout the paper N and R denote the set of all positive integers and the set
of all real numbers respectively. Now we recall some basic definitions and notations.

Definition 2.1. A family I ⊂ 2Y of subsets of a non empty set Y is said to be an
ideal if the following conditions hold.
(i) A,B ∈ I ⇒ A ∪B ∈ I,
(ii) A ∈ I, B ⊂ A⇒ B ∈ I.

From the definition it follows that φ ∈ I. I is called non trivial if Y /∈ I and
proper if I 6= {φ}. An ideal I in Y is said to be an admissible ideal if {x} ∈ I
for each x ∈ Y . Let I is non trivial proper ideal in Y then the family of sets
F(I) = {Y \ A : A ∈ I} is a filter on Y which is called the filter associated
with the ideal I. Throughout the paper I will stand for an admissible ideal of
N. A sequence {xn}n∈N of real numbers is said to be I-convergent to x ∈ R if
for each ε > 0 the set A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I [14]. The sequence
{xn}n∈N of real numbers is said to be I∗-convergent to x ∈ R if there exists a set
M ∈ F(I),M = {m1 < m2 < · · · < mk < · · · } such that limk→∞ xmk

= x [14].
We denote the cardinality of a set A by |A|. Let X be a non empty set. By a

function on X, we mean a real valued function on X. Let Φ be an arbitrary class
of functions defined on X. Then we have the following definitions.

Definition 2.2. [7] (a) Φ is called a lattice if Φ contains all constant functions and
f, g ∈ Φ implies max(f, g) ∈ Φ and min(f, g) ∈ Φ.
(b) Φ is called a translation lattice if it is a lattice and f ∈ Φ, c ∈ R implies f+c ∈ Φ.
(c) Φ is called a congruence lattice if it is a translation lattice and f ∈ Φ implies
−f ∈ Φ.
(d) Φ is a weakly affine lattice if it is a congruence lattice and there is a set C ⊂
(0,∞) such that C is not bounded and f ∈ Φ, c ∈ C implies cf ∈ Φ.
(e) Φ is called an affine lattice if it is a congruence lattice and f ∈ Φ, c ∈ R implies
cf ∈ Φ.
(f) Φ is called a subtractive lattice if it is a lattice and f, g ∈ Φ implies f − g ∈ Φ.
(g) Φ is called an ordinary class if it is a subtractive lattice, f, g ∈ Φ implies f.g ∈ Φ
and f ∈ Φ, f(x) 6= 0, for all x ∈ X implies 1

f ∈ Φ.

Definition 2.3. [16] A sequence of functions {fn}n∈N in Φ is said to converge

uniformly equally to a function f in Φ (written as fn
u.e−−→ f) if there exists a

sequence {εn}n∈N of positive reals converging to zero and a natural number n0
such that the cardinality of the set {n ∈ N : |fn(x)− f(x)| ≥ εn} is at most n0, for
each x ∈ X.

Definition 2.4. [16] A sequence of functions {fn}n∈N in Φ is said to converge

strongly uniformly equally to a function f in Φ (written as fn
s.u.e−−−→ f) if there

exists a sequence {εn}n∈N of positive reals with Σ∞n=1εn <∞ and n0 ∈ N such that
|{n ∈ N : |fn(x)− f(x)| ≥ εn}| ≤ n0, for each x ∈ X.

Definition 2.5. [10] A sequence of functions {fn}n∈N is said to converge I∗-
uniformly equally to a function f (written as fn

I∗-u.e.−−−−→ f) if there exist a se-
quence {εn}n∈N of positive reals converging to zero, M = M({εn}) ∈ F(I) and
k({εn}) ∈ N such that |{n ∈ M : |fn(x) − f(x)| ≥ εn}| is at most k = k({εn} for
all x ∈ X.
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Definition 2.6. [9] A sequence of functions {fn}n∈N is said to converge I∗-strongly

uniformly equally to a function f (written as fn
I∗-s.u.e.−−−−−→ f) if there exists a se-

quence {εn}n∈N of positive reals with Σ∞n=1εn < ∞, a set M = M({εn}) ∈ F(I)
and k({εn}) ∈ N such that |{n ∈ M : |fn(x)− f(x)| ≥ εn}| is at most k = k({εn}
for all x ∈ X.

Now we recall the definitions of α-convergence, α-uniform equal and α-strong
uniform equal convergence.

Definition 2.7. (see [12]) Let (X, d) be a metric space and f, fn : X → R, n ∈ N
be functions. Then {fn}n∈N α-converges to f (written as fn

α−→ f) if for any x ∈ X
and for any sequence {xn}n∈N of points of X converging to x, (fn(xn)) converges
to f(x).

In the literature, α-convergence is also known as continuous convergence [19].

Definition 2.8. [12] Let (X, d) be a metric space and f, fn : X → R, n ∈ N
be functions. Then {fn}n∈N is said to converge α-uniformly equally to a function

f (written as fn
α-u.e−−−→ f) if there exists a sequence {εn}n∈N of positive reals

converging to zero and a natural number n0 such that |{n ∈ N : |fn(xn)− f(x)| ≥
εn}| ≤ n0 for each x ∈ X and xn → x.

Definition 2.9. [12] Let (X, d) be a metric space and f, fn : X → R, n ∈ N
be functions. Then {fn}n∈N is said to converge α-strongly uniformly equally to a

function f (written as fn
α-s.u.e−−−−→ f) if there exists a convergent series Σ∞n=1εn of

positive reals and a natural number n0 such that |{n ∈ N : |fn(xn)−f(x)| ≥ εn}| ≤
n0 for every x ∈ X and xn → x.

3. I∗-α-uniform equal and I∗-α-strong uniform equal convergence

Throughout the paper X stands for a metric space and f, fn are real valued func-
tions defined on X, ΦI

∗-α-u.e. and ΦI
∗-α-s.u.e. stand for the classes of all functions

on X which are I∗-α-uniform equal limits and I∗-α-strong uniform equal limits of
sequences of functions respectively obtained from a class of functions Φ. Then we
first introduce the following definitions.

Definition 3.1. A sequence {fn}n∈N is said to converge I∗-α-uniformly equally

to f (written as fn
I∗-α-u.e.−−−−−−→ f) if there exists a sequence (εn)n∈N of positive reals

converging to zero, a set M ∈ F(I) and n0 ∈ N such that |{n ∈ M : |fn(xn) −
f(x)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x.

Definition 3.2. A sequence {fn}n∈N is said to converge I∗-α-strongly uniformly

equally to f (written as fn
I∗-α-s.u.e.−−−−−−−→ f) if there exists a convergent series Σ∞n=1εn

of positive reals, a set M ∈ F(I) and n0 ∈ N such that |{n ∈M : |fn(xn)−f(x)| ≥
εn}| ≤ n0 for every x ∈ X and (xn)n∈M → x.

Remark 3.3. From the definition we see that fn
I∗-α-s.u.e.−−−−−−−→ f implies fn

I∗-α-u.e.−−−−−−→
f . But the converse is not true as shown in the following example.

Example 3.4. Let I = Ifin, the ideal of all finite subsets of N. Then we have
an infinite set B ∈ F(I). Let us enumerate B as {k1 < k2 < · · · < kn < · · · }.

Let f, fn : R → R, n ∈ N be functions defined by fn(x) =

{
1
n if n ∈ B
0 if n /∈ B

for each
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x ∈ R i.e. for each x ∈ R, fkn(x) = 1
n , fm(x) = 0 for m 6= kn, n = 1, 2, . . . and

f(x) = 0 for all x ∈ R. Suppose εn = 1√
n

. Then εn → 0, as n → ∞. Now we

have |{n ∈ B : |fn(xn)− f(x)| ≥ εn}| = |{kn : 1
n ≥

1√
n
}| is at most one. Therefore

fn
I∗-α-u.e.−−−−−−→ f . But it is not I∗-α-strong uniform equal convergent. If possible let

fn
I∗-α-s.u.e.−−−−−−−→ f . Then there exists a convergent series Σ∞n=1εn of positive reals, a

set M ∈ F(I) and n1 ∈ N such that |{n ∈M : |fn(xn)−f(x)| ≥ εn}| ≤ n1 for every
x ∈ X and (xn)n∈M → x. Then A = B ∩M ∈ F(I) and so A 6= φ and A ⊂ M .
So |{n ∈ A : |fn(xn)− f(x)| ≥ εn}| ≤ n1 for every x ∈ X and (xn)n∈A → x. Since
A ∈ F(I), N \ A ∈ I. So N \ A is finite. So {n ∈ N \ A : |fn(xn) − f(x)| ≥ εn}
is a finite set. So there exists n2 ∈ N such that |{n ∈ N \ A : |fn(xn) − f(x)| ≥
εn}| ≤ n2. Let n0 = max{n1, n2}. So |{n ∈ N : |fn(xn) − f(x)| ≥ εn}| ≤ n0 i.e.
|{n ∈ B : |fn(xn) − f(x)| ≥ εn}| ≤ n0 =⇒ |{kn : |fkn(xn) − f(x)| ≥ εn}| ≤ n0.
This implies that |{n ∈ N : 1

n ≥ εn}| ≤ n0. So there is m ∈ N such that 1
n < εn for

all n > m, which is a contradiction as Σ 1
n is divergent. Therefore {fn}n∈N does

not converge I∗-α-strongly uniformly equally to the function f .

We now observe the following equivalent conditions for the I∗-α-u.e. and I∗-α-s.u.e.
convergences.

Proposition 3.5. Let f, fn : X → R, n ∈ N. If (εn)n∈N and (λn)n∈N are two zero
sequences of positive reals such that 0 < εn ≤ λn for every n ∈ N and (εn)n∈N
witnesses the I∗-α-u.e. convergence then (λn)n∈N also witnesses the same.

Proof. By the given condition there exists a set M ∈ F(I) and n0 ∈ N such that
|{n ∈ M : |fn(xn) − f(x)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x. Since
{n ∈ M : |fn(xn) − f(x)| ≥ λn} ⊂ {n ∈ M : |fn(xn) − f(x)| ≥ εn}, therefore
|{n ∈M : |fn(xn)− f(x)| ≥ λn}| ≤ n0 for each x ∈ X and (xn)n∈M → x. �

Remark 3.6. If Σ∞n=1εn and Σ∞n=1λn are two convergent series of positive reals
such that 0 < εn ≤ λn for every n ∈ N then, by similar arguments, the above result
also holds for I∗-α-strong uniform equal convergences.

Lemma 3.7. Let fn : X → R, n ∈ N. If fn
I∗-α-u.e.−−−−−−→ 0 then f2n

I∗-α-u.e.−−−−−−→ 0.

Proof. By the condition, there exists a sequence (εn)n∈N of positive reals converging
to zero, a set M ∈ F(I) and n0 ∈ N such that |{n ∈ M : |fn(xn)| ≥ εn}| ≤ n0
for each x ∈ X and (xn)n∈M → x. Therefore |{n ∈ M : |f2n(xn)| ≥ ε2n}| ≤
|{n ∈ M : |fn(xn)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x and hence

f2n
I∗-α-u.e.−−−−−−→ 0. �

Lemma 3.8. Let f, fn : X → R, n ∈ N. If f is a non zero constant function and

fn
I∗-α-u.e.−−−−−−→ f then fn.f

I∗-α-u.e.−−−−−−→ f2.

Proof. Let f(x) = c for each x ∈ X where c is a non zero constant. Since

fn
I∗-α-u.e.−−−−−−→ f then there exist a sequence (εn)n∈N of positive reals converging

to zero, M ∈ F(I) and n0 ∈ N such that |{n ∈ M : |fn(xn) − f(x)| ≥ εn}| ≤ n0
for each x ∈ X and (xn)n∈M → x. Therefore |{n ∈ M : |(fn.f)(xn) − (f.f)(x)| ≥
|c|εn}| = |{n ∈M : |fn(xn)− f(x)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x.

It follows fn.f
I∗-α-u.e.−−−−−−→ f2. �
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Note 3.9. By similar techniques we can prove that if f is bounded and fn
I∗-α-u.e.−−−−−−→

f then fn.f
I∗-α-u.e.−−−−−−→ f2 and also f2n

I∗-α-u.e.−−−−−−→ f2.

Theorem 3.10. If fn
I∗-α-u.e.−−−−−−→ f , gn

I∗-α-u.e.−−−−−−→ g and a, b ∈ R, then afn +

bgn
I∗-α-u.e.−−−−−−→ af + bg.

Proof. By the condition there exist sequences (σn)n∈N and (ρn)n∈N of positive
reals both converging to zero, M1,M2 ∈ F(I) and n1, n2 ∈ N such that |{n ∈
M1 : |afn(xn) − af(x)| ≥ |a|σn}| ≤ n1 for each x ∈ X and (xn)M1

→ x and
|{n ∈ M2 : |bgn(xn) − bg(x)| ≥ |b|ρn}| ≤ n2 for each x ∈ X and (xn)M2

→ x.
Let εn = |a|σn + |b|ρn. Also let B1 = {n ∈ M1 : |afn(xn) − af(x)| ≥ |a|σn},
B2 = {n ∈ M2 : |bgn(xn) − bg(x)| ≥ |b|ρn} and B = {n ∈ M1 ∩M2 : |(afn +
bgn)(xn) − (af + bg)(x)| ≥ εn}. Now for n ∈ B, we have εn ≤ |(afn + bgn)(xn) −
(af + bg)(x)| ≤ |afn(xn) − af(x)| + |bgn(xn) − bg(x)|. So B ⊂ {n ∈ M1 ∩M2 :
|afn(xn) − af(x)| ≥ εn} ∪ {n ∈ M1 ∩M2 : |bgn(xn) − bg(x)| ≥ εn} ⊂ B1 ∪ B2.
Therefore |{n ∈ M1 ∩M2 : |(afn + bgn)(xn) − (af + bg)(x)| ≥ εn}| ≤ n1 + n2 for
each x ∈ X and (xn)M1∩M2

→ x, where M1 ∩M2 ∈ F(I) and limn→∞ εn = 0.
Hence the theorem follows. �

Corollary 3.11. If fn
I∗-α-u.e.−−−−−−→ f , gn

I∗-α-u.e.−−−−−−→ g then fn+gn
I∗-α-u.e.−−−−−−→ f +g and

fn − gn
I∗-α-u.e.−−−−−−→ f − g.

Lemma 3.12. If f , g are bounded and fn
I∗-α-u.e.−−−−−−→ f , gn

I∗-α-u.e.−−−−−−→ g then

fn.gn
I∗-α-u.e.−−−−−−→ f.g.

Proof. Applying the Lemma 3.7, Lemma 3.8 and Corollary 3.11, we have fn.gn =
(fn+gn)

2−(fn−gn)2
4

I∗-α-u.e.−−−−−−→ (f+g)2−(f−g)2
4 = f.g. �

Remark 3.13. The Lemma 3.7, Lemma 3.8, Theorem 3.10 and Lemma 3.12 also
hold good for I∗-α-strong uniform equal convergences.

Theorem 3.14. Let Φ be a class of functions on X. If Φ is a lattice, a translation
lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive
lattice then so is ΦI

∗-α-u.e..

Proof. Let Φ be a lattice. Then Φ contains all constant functions. If f is a constant
function and fn = f, n ∈ N, belonging to Φ, then for any sequence (εn)n∈N of
positive reals converging to zero, M ∈ F(I) the set {n ∈M : |fn(xn)−f(x)| ≥ εn}
is empty for each x ∈ X and (xn)n∈M → x and so ΦI

∗-α-u.e. contains all constants
functions. Now we approach to show max(f, g) and min(f, g) ∈ ΦI

∗-α-u.e.. For, if

fn
I∗-α-u.e.−−−−−−→ f , then then there exists a sequence (εn)n∈N of positive reals converging

to zero, M ∈ F(I) and n0 ∈ N such that |{n ∈ M : |fn(xn) − f(x)| ≥ εn}| ≤ n0

for each x ∈ X and (xn)n∈M → x. Since
∣∣∣|fn(xn)| − |f(x)|

∣∣∣ ≤ ∣∣fn(xn)− f(x)
∣∣ and

observe that {n ∈M :
∣∣∣|fn(xn)| − |f(x)|

∣∣∣ ≥ εn} ⊂ {n ∈M :
∣∣fn(xn)− f(x)

∣∣ ≥ εn}.
Therefore |{n ∈M :

∣∣∣|fn(xn)|−|f(x)|
∣∣∣ ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M →

x. Hence |f | ∈ ΦI
∗-α-u.e..

Now using the Corollary 3.11 we have fn+gn
2 + |fn−gn|2

I∗-α-u.e.−−−−−−→ f+g
2 + |f−g|2 which

proves max(f, g) ∈ ΦI
∗-α-u.e., in the similar way we can show that min(f, g) ∈
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ΦI
∗-α-u.e.. Therefore ΦI

∗-α-u.e. is a lattice. The proof of the remaining parts stay
on the similar arguments. �

Theorem 3.15. Let Φ be a class of functions on X and f ∈ ΦI
∗-α-u.e be bounded

on X and f(x) 6= 0 for each x ∈ X. If 1
f is bounded on X, then 1

f ∈ ΦI
∗-α-u.e.

Proof. Since f ∈ ΦI
∗−α−u.e, there exists a sequence {fn}n∈N such that fn

I∗−α−u.e−−−−−−−→
f . Then there exists a sequence (σn)n∈N of positive reals converging to zero, a set
M ∈ F(I) and n0 ∈ N such that |{n ∈ M : |fn(xn) − f(x)| ≥ σn}| ≤ n0 for each
x ∈ X and (xn)n∈M → x. Let A = {n ∈M : |fn(xn)− f(x)| ≥ σn}. Now 1

f being

bounded on X, there exists a positive number λ such that 1
|f(x)| < λ for all x ∈ X.

Define gn ∈ Φ by gn(x) = max{fn(x),
√
σn} for x ∈ X and n ∈ N. Now we have

{n ∈M : |gn(xn)− f(x)| ≥ σn}
⊂ {n ∈M : gn = fn, |gn(xn)− f(x)| ≥ σn} ∪ {n ∈M : gn =

√
σn, |gn(xn)− f(x)| ≥ σn}

⊆ A ∪ {n ∈M : gn =
√
σn, gn(xn)− f(x) ≥ σn} ∪ {n ∈M : gn =

√
σn,−gn(xn) + f(x) ≥ σn}

⊆ A ∪ {n ∈M : f(x) ≤
√
σn − σn} ∪ {n ∈M : f(x) ≥ fn(xn) + σn}

⊆ A ∪ {n ∈M : f(x) ≤
√
σn} ∪A

⊆ A ∪ {n ∈M : f2(x) ≤ σn}.

Since 1
|f(x)| < λ for all x ∈ X and (σn)n∈N is convergent, {n ∈ M : f2(x) ≤ σn} is

finite. Let |{n ∈ M : f2(x) ≤ σn}| ≤ n1. Therefore |{n ∈ M : |gn(xn) − f(x)| ≥
σn}| ≤ n0 + n1 for x ∈ X and (xn)n∈M → x. Now |{n ∈ M : | 1

gn(xn)
− 1

f(x) | ≥
λ
√
σn}| = |{n ∈M : |gn(xn)−f(x)|

|gn(xn)||f(x)| ≥ λ
√
σn}| ≤ |{n ∈M : |gn(xn)− f(x)| ≥ σn}| ≤

n0 + n1 for x ∈ X and (xn)n∈M → x. As λ
√
σn → 0, so 1

gn

I∗-α-u.e.−−−−−−→ 1
f . Hence

1
f ∈ ΦI

∗-α-u.e. This proves the theorem. �

Theorem 3.16. Let Φ be a class of functions on X. If Φ is a lattice, a translation
lattice, a congruence lattice, a weakly affine lattice, an affine lattice or a subtractive
lattice then so is ΦI

∗-α-s.u.e..

Proof. Let Φ be a lattice. Then Φ contains all constant functions. We can eas-
ily prove that ΦI

∗-α-s.u.e. also contains the constant functions. Now we show if

fn
I∗-α-s.u.e.−−−−−−−→ f then |fn|

I∗-α-s.u.e.−−−−−−−→ |f |. For, let there exist a convergent se-
ries Σ∞n=1εn of positive reals, a set M ∈ F(I) and n0 ∈ N such that |{n ∈ M :
|fn(xn) − f(x)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x. Since for any two

reals a1 and a2,
∣∣∣|a1|−|a2|∣∣∣ ≤ ∣∣a1−a2∣∣, it follows that {n ∈M :

∣∣∣|fn(xn)|−|f(x)|
∣∣∣ ≥

εn} ⊂ {n ∈ M : |fn(xn) − f(x)| ≥ εn}. Therefore |{n ∈ M :
∣∣∣|fn(xn)| − |f(x)|

∣∣∣ ≥
εn}| ≤ n0 for each x ∈ X and (xn)n∈M → x. Hence |f | ∈ ΦI

∗-α-s.u.e.. Now if

fn
I∗-α-s.u.e.−−−−−−−→ f , gn

I∗-α-s.u.e.−−−−−−−→ g and a, b ∈ R then there exist convergent series
Σ∞n=1σn and Σ∞n=1ηn of positive reals, M1,M2 ∈ F(I) and n1, n2 ∈ N such that
|{n ∈ M1 : |afn(xn) − af(x)| ≥ σn}| ≤ n1 for each x ∈ X and (xn)M1

→ x
|{n ∈ M2 : |bgn(xn) − bg(x)| ≥ ηn}| ≤ n2 for each x ∈ X and (xn)M2

→ x.
Suppose that εn = max{2|a|σn, 2|b|ηn} and n0 = n1 + n2. Now following the sim-
ilar techniques of the Theorem 3.10 we have |{n ∈ M1 ∩M2 : |(afn + bgn)(xn) −
(af + bg)(x)| ≥ εn}| ≤ n0 for each x ∈ X and (xn)M1∩M2

→ x. Now since M1 ∩
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M2 ∈ F(I) and Σ∞n=1εn = Σ∞n=1max{2|a|σn, 2|b|ηn} ≤ Σ∞n=1{2|a|σn + 2|b|ηn} =

2|a|Σ∞n=1σn + 2|b|Σ∞n=1ηn < ∞. Hence afn + bgn
I∗-α-s.u.e.−−−−−−−→ af + bg. Therefore

fn+gn
2 + |fn−gn|2

I∗-α-s.u.e.−−−−−−−→ f+g
2 + |f−g|2 which gives max(f, g) ∈ ΦI

∗-α-s.u.e.. In the

similar way we can easily show that min(f, g) ∈ ΦI
∗-α-s.u.e.. Therefore Φ is a lat-

tice.The proofs of the remaining parts can be shown by the similar arguments. �

4. Some types of I-convergence preserved under uniform conjugacy

First we recall the following preliminary concept found in classical mathematical
theory for the sake of completeness.

Let (X, d) and (Y, ρ) be two metric spaces. If h : X → Y is a homeomorphism
such that h is uniformly continuous on X and h−1 is uniformly continuous on Y ,
then h is said to be uniform homeomorphism.

Now we recall the definitions of uniform conjugacy and I-exhaustiveness for
sequences of functions which will be useful in the sequel.

Definition 4.1. [21] Let (X, d) and (Y, ρ) be two metric spaces, F = {fn}n∈N and
G = {gn}n∈N be two sequences of maps in X and Y respectively and h : X → Y
be a homeomorphism. If for any k ∈ {1, 2, . . .}, gk(h(x)) = h(fk(x)) for every
x ∈ X, then F and G are said to be h-conjugate. In particular, if h is a uniform
homeomorphism then F and G are said to be uniformly h-conjugate.

Definition 4.2. [17] Let (X, d) and (Y, ρ) be two metric spaces. We suppose that
{fn}n∈N is a sequence of functions from X to Y . Then {fn}n∈N is said to be I-
exhaustive at x iff for every ε > 0, there exist a δ > 0, a set A ∈ I (depending on
ε and x) such that ρ(fn(x), fn(y)) < ε whenever n ∈ N \ A and for all y ∈ S(x, δ)
where S(x, δ) = {y ∈ X : d(x, y) < δ}.The sequence {fn}n∈N is said to be I-
exhaustive on X iff it is I-exhaustive at every x ∈ X.

Definition 4.3. [17] Let (X, d) and (Y, ρ) be two metric spaces and f, fn : X → Y ,
n ∈ N be functions. We say that the sequence {fn}n∈N I-α-converges to f (written

as fn
I-α−−→ f) at x0 ∈ X if and only if for each sequence {xn}n∈N of points of X if

xn
I−→ x0), then fn(xn)

I−→ f(x0).

Now we prove that I-exhaustiveness, I-uniform convergence and I-α-convergence
of sequences of functions are preserved under uniform conjugacy.

Theorem 4.4. Let (X, d) and (Y, ρ) be two metric spaces and h : X → Y be a
uniform homeomorphism and let F = {fn}n∈N and G = {gn}n∈N be uniformly
h-conjugate. If F is I-exhaustive on X then G is also I-exhaustive on Y .

Proof. Since F is I-exhaustive on X, it is I-exhaustive at every x ∈ X. Let y ∈ Y .
Now h being onto, there is x ∈ X such that h(x) = y. First we show G is I-
exhaustive at y. Let ε > 0 be given. Since h is uniformly continuous, there exists
δ > 0 such that for every x1, x2 ∈ X, d(x1, x2) < δ ⇒ ρ(h(x1), h(x2)) < ε. Since F
is I-exhaustive at x ∈ X, there exists β > 0 and a set A ∈ I such that for n ∈ Ac,
d(fn(x), fn(z)) < δ for all z ∈ S(x, β) i.e. for all z satisfying d(x, z) < β implies
d(fn(x), fn(z)) < δ. Since h−1 is uniformly continuous, there exists a η > 0 such
that for every y1, y2 ∈ Y , ρ(y1, y2) < η ⇒ d(h−1(y1), h−1(y2)) < β. Let b ∈ S(y, η)
then ρ(y, b) < η, which gives d(h−1(y), h−1(b)) < β. It implies d(fn(x), fn(z)) < δ
for n ∈ Ac where z = h−1(b). Therefore finally we get ρ(h(fn(x)), h(fn(z))) < ε



ON I-CONVERGENCE OF SEQUENCES OF FUNCTIONS AND UNIFORM CONJUGACY 19

for n ∈ Ac. Since F and G are h-conjugate, we have ρ(gn(h(x)), gn(h(z))) < ε i.e.
ρ(gn(y), gn(b)) < ε for all n ∈ Ac. Hence G is I-exhaustive at y. Since y ∈ Y is
arbitrary, G is I-exhaustive on Y . �

Remark 4.5. In the similar way we can prove that if G is I-exhaustive on Y then
F is I-exhaustive on X.

Theorem 4.6. Let (X, d) and (Y, ρ) be two metric spaces and h : X → Y be a
uniform homeomorphism and let F = {fn}n∈N and G = {gn}n∈N be uniformly
h-conjugate. Then F is I-uniformly convergent iff G is so.

Proof. Let {fn}n∈N be I-uniformly convergent to f where f : X → X. We show
that {gn}n∈N is I-uniformly convergent to g where g : Y → Y such that f and g are
uniformly h-conjugate. Let ε > 0 be given. Since h is uniformly continuous, there
exists a δ > 0 such that for every x1, x2 ∈ X, d(x1, x2) < δ ⇒ ρ(h(x1), h(x2)) < ε.
Since {fn}n∈N is I-uniformly convergent to f , there is a set A ∈ I such that for
n ∈ Ac, d(fn(x), f(x)) < δ for all x ∈ X, which gives ρ(h(fn(x)), h(f(x))) < ε.
Now by the condition ρ(gn(h(x)), g(h(x))) < ε for all n ∈ Ac and for every x ∈ X.
Since h is bijective, we have ρ(gn(y), g(y)) < ε for all n ∈ Ac and for every y ∈ Y .
Hence {gn}n∈N is I-uniformly convergent to g. We can easily prove the converse
part. �

Proposition 4.7. Let F and G be uniformly h-conjugate. If {fn}n∈N converges
I-pointwise to f then {gn}n∈N converges I-pointwise to g where f and g are h-
conjugate.

Note 4.8. It was shown in [1] that if f : X ⊂ R → R then C(I) = C(If ) where
C(I) : the class of all functions I-continuous on X and C(If ) : the class of all
functions continuous on X in usual sense.

Theorem 4.9. Let (X, d) and (Y, ρ) be two metric spaces and h : X → Y be a
uniform homeomorphism and let F = {fn}n∈N and G = {gn}n∈N be uniformly h-
conjugate. If {fn}n∈N I-α-converges to f : X → X then {gn}n∈N I-α-converges to
g : Y → Y where f and g are h-conjugate.

Proof. Let y ∈ Y and yn
I−→ y. Since h is onto, we get x, xn ∈ X, n ∈ N, such that

h(xn) = yn and h(x) = y. So yn
I−→ y ⇒ h(xn)

I−→ h(x). Since h−1 is continuous,

xn
I−→ x. Then by the condition we have fn(xn)

I−→ f(x). Now h being continuous,

h(fn(xn))
I−→ h(f(x)). Finally by the given condition we have gn(h(xn))

I−→ g(h(x))

i.e. gn(yn)
I−→ g(y). This proves the theorem. �
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