SYMMETRY IDENTITIES FOR THE 2-VARIABLE UNIFIED
APOSTOL-TYPE POLYNOMIALS

BURAK KURT*, SECIL BILGIC

Abstract. In this paper, we introduce and investigate 2-variable unified Apostol-
type polynomials. We obtain some symmetry identities between these polyno-
mials and the generalized sum of integer powers. We give explicit relation for
this unified family. Also, we prove some recurrence relation for these polyno-
mials.

1. Introduction

Throughout this paper, we always make use of the following notations: \(\mathbb{N} \) denotes
the set of natural numbers, \(\mathbb{N}_0 \) denotes the set of nonnegative integers, \(\mathbb{R} \) denotes
the set of real numbers, \(\mathbb{C} \) denotes the set of complex numbers.

The generalized Apostol-Bernoulli polynomials \(B_{n}^{(\alpha)}(x, \lambda) \) of order \(\lambda \in \mathbb{N}_0 \), the
generalized Apostol-Euler polynomials \(E_{n}^{(\alpha)}(x, \lambda) \) of order \(\alpha \in \mathbb{N}_0 \) and the general-
ized Apostol-Genocchi polynomials \(G_{n}^{(\alpha)}(x, \lambda) \) of order \(\alpha \in \mathbb{N}_0 \) are defined by the
following generating functions ([5], [15]-[18], [20]) respectively,

\[
\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x, \lambda) \frac{t^n}{n!} = \left(\frac{t}{\lambda e^t - 1} \right)^\alpha e^{xt}, \quad |t| < 2\pi, \quad (\text{when } \lambda = 1, \quad |t| < |\log \lambda| \quad \text{when } \lambda \neq 1),
\]

(1)

\[
\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x, \lambda) \frac{t^n}{n!} = \left(\frac{2}{\lambda e^t + 1} \right)^\alpha e^{xt}, \quad (|t| < \pi, \quad \text{when } \lambda = 1, \quad |t| < |\log(-\lambda)|, \quad \text{when } \lambda \neq 1)
\]

(2)

2010 Mathematics Subject Classification. 11B68, 11B73, 33E30.
Key words and phrases. Apostol-Bernoulli numbers and polynomials, Apostol-Euler numbers
and polynomials, Apostol-Genocchi numbers and polynomials, The Stirling numbers of the second
kind, multiple power-sums, 2-variable Apostol type polynomials.
©2017 Ilirias Research Institute, Prishtinë, Kosovë.
Communicated by Serkan Araci.
*The present investigation was supported, by the Scientific Research Project Administration
of Akdeniz University.
\[\sum_{n=0}^{\infty} G_n^{(\alpha)}(x, \lambda) \frac{t^n}{n!} = \left(\frac{2t}{\lambda e^t + 1} \right)^\alpha e^{xt}, \quad (|t| < \pi \text{ when } \lambda = 1, \quad |t| < |\log(-\lambda)| \text{ when } \lambda \neq 1). \]

(3)

The multiplier power sums are defined by Luo [16] as follows
\[S_k^{(l)}(m; \lambda) = \sum_{0 \leq m_1 \leq \ldots \leq m_{vl}} \binom{n}{l} (-l)^{n-p} S_{k}^{(l)}(m; \lambda) \frac{t^n}{n!} \]

(4)

From (4), we have
\[\left(1 - \lambda^m e^{mt} \right)^l = \frac{1}{l!} \sum_{n=0}^{\infty} \binom{n}{l} (-l)^{n-p} S_k^{(l)}(m; \lambda) \frac{t^n}{n!} \]

(5)

(see detail in [16]).

Ozden et al in [19] defined the generalized Stirling numbers of the second kind as
\[\sum_{n=0}^{\infty} S(n,v,a,b,\beta) \frac{t^n}{n!} = \left(\frac{\beta b e^t - a^b}{e^t} \right)^v. \]

(6)

Ozarslan in [2] defined the unified Apostol-Bernoulli, Euler and Genocchi polynomials as
\[\left(\frac{2^{1-k} t^k}{\beta^b e^t - a^b} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} P_n^{(\alpha)}(x, k, a, b) \frac{t^n}{n!}, \]

(7)

where \(k \in \mathbb{N}_0, \ a, b \in \mathbb{R}\setminus\{0\}, \ \alpha, \beta \in \mathbb{C}. \)

Khan et al in ([9]-[11]) defined the 2-variable general polynomial family as
\[e^{xt} \phi(y, t) = \sum_{n=0}^{\infty} P_n(x, y) \frac{t^n}{n!}, \quad P_0(x, y) = 1 \]

(8)

where
\[\phi(y, t) = \sum_{n=0}^{\infty} \phi_n(y) \frac{t^n}{n!}, \quad \phi_0(y) \neq 0. \]

Khan et al in ([9]-[11]) gave some basic relations and explicit relations for this polynomial.

We define the 2-variable unified Apostol-Bernoulli, Euler and Genocchi polynomials \(P_n^{(\alpha)}(x, y; k, a, b) \) of order \(\alpha \) as
\[\sum_{n=0}^{\infty} P_n^{(\alpha)}(x, y; k, a, b) \frac{t^n}{n!} = \left(\frac{2^{1-k} t^k}{\beta^b e^t - a^b} \right)^\alpha e^{xt} \phi(y, t) \]

(9)

where
\[\sum_{n=0}^{\infty} P_n(x, y) \frac{t^n}{n!} = e^{xt} \phi(y, t) \quad , \quad \phi(y, t) = \sum_{n=0}^{\infty} \phi_n(y) \frac{t^n}{n!}, \quad \phi_0(y) \neq 0. \]

Luo in ([15]-[18]) introduced and investigated for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and Apostol-Genocchi polynomials. He
proved the multiplication formulas for Apostol-type polynomials. He proved some recurrence relation and explicit relationships for these polynomials. Srivastava et al in (20-23) gave some generalizations, proved some theorems, recurrence relations for the Apostol-Bernoulli, Euler, Genocchi polynomials.

Kurt in (13-14) proved some identities and symmetric relations for these polynomials.

Ozden et al in [19] gave unified representation for these polynomials. Ozarslan (1, 2) proved some relation and symmetric relations for the unified Apostol-type polynomials and Hermite-based Apostol-Bernoulli, Euler and Genocchi polynomials.

Khan et al ([9]-[11]) introduced and proved some relations for the 2-variable Apostol-type polynomials.

In this work, we define the 2-variable unified Apostol-type polynomials \(p_{\alpha}^{(n, \beta)}(x, y; k, a, b) \) of order \(\alpha \in \mathbb{N}_0 \). We give some basic relationships for these polynomials. Also, we prove some symmetric relations between for these polynomials.

2. Explicit Relation For The 2-Variable Unified Apostol-Type Polynomials

In this section, we aim to obtain the explicit relation of the polynomials \(p_{\alpha}^{(n, \beta)}(x, y; k, a, b) \). We prove some relations for these polynomials and give the relations between the 2-variable unified family of generalized Apostol-type polynomials and the Stirling numbers of second kind \(S(n, v, a, b, \beta) \) of order \(v \).

For \(\alpha = 1 \), we write again the equation (9) as

\[
F(x, y; k, a, b, \beta, t) = \sum_{n=0}^{\infty} p_{n, \beta}(x, y; k, a, b) \frac{t^n}{n!} = \left(\frac{2^{1-k} t^k}{\beta^b e^t - a^b} \right) e^{xt} \phi(y, t). \tag{10}
\]

We can obtain the following equations easily from (9)

\[
F^{(\alpha)}(x+1, y; k, a, b, \beta, t) = e^t F^{(\alpha)}(x, y; k, a, b, \beta, t), \tag{11}
\]

\[
F(x, k, a, b, \beta, t) F(w, k, a, b, \beta, t) = F^{(2)}(0, k, a, b, \beta, t) e^{(x+w)t}, \tag{12}
\]

\[
(\beta^b e^t + a^b) F(x, y; k, a^2, b, \beta^2, 2t) = 2^k F(2x, y, k, a, b, \beta, 2t) \tag{13}
\]

and

\[
F(x, y; k, a, b, \beta, t) F(u, 0; k, a, b, \beta, t) = F(k, a, b, \beta, t) F(x + u, y; k, a, b, \beta, t). \tag{14}
\]

Theorem 1. The 2-variable unified Apostol-type polynomials satisfy the following equations

\[
p_{\alpha}^{(n, \beta)}(x+1, y; k, a, b) = \sum_{l=0}^{n} \binom{n}{l} p_{\alpha}^{(n-l, \beta)}(x, y; k, a, b), \tag{15}
\]
There is the following relation between the Stirling numbers of the

Theorem 2. There is the following relation between the Stirling numbers of the
Second kind $S(n, v, a, b)$ and the 2-variable unified Apostol-type polynomials

$$pP_{n-k, \beta}(x, y; k, a, b) = \frac{(n-k)!}{2^k k!} \sum_{l=0}^{n} \binom{n}{l} P_{n-l, \beta}(x, y; k, a, b) S(l, 1, a, b)$$

Proof. From (6) and (9), we write as

$$\sum_{n=0}^{\infty} pP_{n, \beta}(x, y; k, a, b) \frac{t^n}{n!} = \frac{1}{2^{1-k}} \left(\frac{2^{1-k} t^k}{\beta^{k} a^{k} - a^{b}} \right)^{(\alpha)} e^{x t} \phi(y, t) \frac{\beta^{b} e^{t} - a^{b}}{t^{k}}$$

$$\sum_{n=0}^{\infty} pP_{n, \beta}(x, y; k, a, b) \frac{t^{n+k}}{n!} = \sum_{n=0}^{\infty} pP_{n, \beta}(x, y; k, a, b) \frac{t^{m}}{m!} \sum_{l=0}^{\infty} S(l, 1, a, b) \frac{t^{l}}{l!}.$$

By using Cauchy product and comprising the coefficient of $\frac{t^n}{m!}$, we have (19).}

Theorem 3. The following statements of the 2-variable unified Apostol-type polynomials hold:

1. $\frac{d}{dx} pP_{n, \beta}(x, y; k, a, b) = n pP_{n-1, \beta}(x, y; k, a, b)$
2. $\sum_{n=0}^{\infty} \left(\frac{1}{n!} \right)^{(\alpha)} pP_{n, \beta}(x, y; k, a, b) P_1(x, y)$
3. $\sum_{n=0}^{\infty} \binom{n}{m} pP_{m, \beta}(x, y; k, a, b) pP_{n-m, \beta}(u, y; k, a, b)$
4. $\sum_{n=0}^{\infty} \binom{n}{m} pP_{m, \beta}(x, y; k, a, b) pP_{n-m, \beta}(u, y; k, a, b)$
5. $\int_{x_0}^{x_1} pP_{n, \beta}(x; y; k, a, b) dx = \frac{1}{n} \left\{ pP_{n, \beta}(x_1; y; k, a, b) - pP_{n, \beta}(x_0; y; k, a, b) \right\}$
Kurt in \((13, 14)\) proved some symmetry identities for the unified Apostol-type polynomials. Ozarslan \([2]\) proved some relation for the Unified Apostol-Bernoulli, Euler, Genocchi polynomials.

In this section, we give new symmetry identities for the 2-variable unified Apostol-type polynomials.

Theorem 4. The following symmetry relations for the 2-variable unified Apostol-type polynomials hold true:

\[
\sum_{m=0}^{n} \binom{n}{m} \sum_{i=0}^{c-1} \left(\frac{\beta}{a} \right)^i P_{m,\beta}^{(\alpha)} \left(x + \frac{di}{c}; dy; k, a, b \right) c^m
\]

\[
\sum_{j=0}^{d-1} \binom{\beta}{a}^j b j P_{n-m,\beta}^{(\alpha)} \left(X + \frac{cj}{d}; cY; k, a, b \right) d^{n-m}
\]

\[
= \sum_{m=0}^{n} \binom{n}{m} \sum_{i=0}^{d-1} \left(\frac{\beta}{a} \right)^i P_{m,\beta}^{(\alpha)} \left(x + \frac{ci}{d}; cy; k, a, b \right) d^m
\]

\[
\sum_{j=0}^{c-1} \binom{\beta}{a}^j b j P_{n-m,\beta}^{(\alpha)} \left(X + \frac{dj}{d}; dY; k, a, b \right) c^{n-m}
\]. (20)

Proof. Let \(f(t) \)

\[
f(t) = \frac{2^{1-k} \alpha e^{k\alpha} e^{k\beta} \phi(y, cdt) \left(\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha \left(\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha \right) e^{k\beta} \phi(Y, cdt) \right)}{(\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha)^{k\alpha}}
\]

\[
= \frac{1}{(cd)^{k\alpha}} \left\{ \left(\frac{2^{1-k} (ct)^k}{\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha} \right)^{(\alpha)} e^{k\alpha} \phi(y, cdt) a^{bc-b} \left(\frac{\beta}{a} \right)^bc e^{k\beta} - 1 \right\}
\]

\[
\left(\frac{2^{1-k} (dt)^k}{\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha} \right)^{(\alpha)} e^{k\alpha} \phi(Y, cdt) a^{bd-b} \left(\frac{\beta}{a} \right)^bd e^{k\beta} - 1 \right\}
\]

since the expression for \(f(t) \) is symmetric in \(c \) and \(d \). We can expand \(f(t) \) into series in

\[
\phi(eY, dt) a^{bd-b} \sum_{j=0}^{d-1} \binom{\beta}{a}^j b j e^{k\beta} \left(\frac{2^{1-k} (dt)^k}{\beta \beta \beta \beta e^{k\beta} e^{k\beta} e^{k\beta} e^{k\beta} - \alpha} \right)^{(\alpha)} e^{k\alpha}
\]
By using the Cauchy product, we have

\[
\begin{align*}
&= \frac{1}{(cd)^{ka}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \binom{n}{m} \left(\sum_{i=0}^{d-1} \left(\frac{\beta}{a} \right)^i \right) p_{m}^{(\alpha)} \left(x + \frac{di}{c}, dy; k, a, b \right) c^m a^{bc+bd-2b} \\
&= \sum_{j=0}^{d-1} \left(\frac{\beta}{a} \right)^j p_{n-m}^{(\alpha)} \left(X + \frac{c}{d} j, cY; k, a, b \right) \frac{t^n}{n!} \quad (21)
\end{align*}
\]

in a similar manner,

\[
\begin{align*}
f(t) &= \frac{1}{(cd)^{ka}} \left(\frac{2^{1-k} dt}{\beta^b e^{dt} - a^b} \right)^{(\alpha)} e^{dx t} \phi (cy, dt) a^{bd-b} \sum_{j=0}^{c-1} \left(\frac{\beta}{a} \right)^j e^{dt j} \\
&= \frac{1}{(cd)^{ka}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \binom{n}{m} \left(\sum_{i=0}^{d-1} \left(\frac{\beta}{a} \right)^i \right) p_{m}^{(\alpha)} \left(x + \frac{ic}{d}, cy; k, a, b \right) d^m a^{bd+bc-2b} \\
&= \sum_{j=0}^{d-1} \left(\frac{\beta}{a} \right)^j p_{n-m}^{(\alpha)} \left(X + \frac{dj}{c}, dY; k, a, b \right) c^n a^{bd} \frac{t^n}{n!} \quad (22)
\end{align*}
\]

From (21) and (22), we have (20).

Theorem 5. This is the following relations holds true.

\[
\sum_{m=0}^{n} \binom{n}{m} p_{m, \alpha}^{(\alpha)} (x, dy; k, a, b) c^m a^{bd} = \sum_{n=0}^{m} \binom{n}{m} p_{n-m, \alpha}^{(\alpha)} (x, cY; k, a, b) d^m a^{bd} \quad (23)
\]

Theorem 6. There is the following relation between the multiplier power sums and the 2-variable unified Apostol-type polynomials

\[
\begin{align*}
d^{kl} \sum_{l=0}^{n} \binom{n}{l} \left\{ \binom{p_{(\alpha+1)}^{(\alpha)}}{n-l, \alpha} (dx, dy; k, a, b) c^{n-l} \sum_{s=0}^{l} \binom{l}{s} \sum_{p=0}^{s} \binom{s}{p} \left(-\alpha \right)^{s-p} \\
S_{k}^{(\alpha)} \left(c, \frac{\beta}{a} \right) p_{l-s, \alpha}^{(\alpha)} (cX, cY; k, a, b) \right\} \\
&= c^{kl} \sum_{l=0}^{n} \binom{n}{l} \left\{ \binom{p_{(\alpha+1)}^{(\alpha)}}{n-l, \alpha} (cX, cY; k, a, b) d^{n-l} \sum_{s=0}^{l} \binom{l}{s} \sum_{p=0}^{s} \binom{s}{p} \left(-\alpha \right)^{s-p} \\
S_{k}^{(\alpha)} \left(d, \frac{\beta}{a} \right) p_{l-s, \alpha}^{(\alpha)} (dx, dy; k, a, b) \right\} \quad (24)
\end{align*}
\]
Proof. Let

\[g(t) = \frac{t^{(\alpha+1)}e^{\alpha \int_0^t x \, dx} \left(\frac{2^{1-k}}{\beta^k e^t - a^k} \right)^{\alpha+1} e^{\alpha \int_0^t x \, dx} \phi(y, \int_0^t x \, dx)}{e^{\alpha \int_0^t x \, dx} \left(\frac{2^{1-k}}{\beta^k e^t - a^k} \right)^{\alpha+1} e^{\alpha \int_0^t x \, dx} \phi(y, \int_0^t x \, dx)}. \]

From the \(g(t) \) is symmetric in \(c \) and \(d \), we write as

\[= \left\{ \frac{1}{c^k(a+1) \alpha} \left(\frac{(ct)^k}{\beta^k e^t - a^k} \right)^{\alpha+1} e^{\alpha \int_0^t x \, dx} \phi(y, \int_0^t x \, dx) \right\}. \]

By using the equation (5) in above equality, we write as

\[S_k^{(\alpha)} \left(c, \left(\frac{\beta}{a} \right)^b \right) e^{\alpha \int_0^t x \, dx} \left(\frac{\sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \left(P_{n+1, \alpha} (dx, dy; \kappa, a, b) \right) c^n a^{b^n} \beta^{-b^n} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \right) \right) \]

Using cauchy product, we get

\[= \frac{1}{c^k(a+1) \alpha} \left(\frac{\sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \left(P_{n+1, \alpha} (dx, dy; \kappa, a, b) \right) c^n a^{b^n} \beta^{-b^n} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \right) \]

In a similar manner

\[g(t) = \frac{1}{d^k(a+1) \alpha} \left(\frac{\sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \left(P_{n+1, \alpha} (dx, dy; \kappa, a, b) \right) c^n a^{b^n} \beta^{-b^n} \sum_{s=0}^{\infty} \sum_{p=0}^{\infty} (s/p)(-\alpha)^s \cdot \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \frac{(l)}{n!} \right) \]

Comparing the coefficients \(\frac{t^n}{n!} \) both sides above equations. We have (24).

Acknowledgments. The present investigation was supported, by the Scientific Research Project Administration of Akdeniz University. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

Burak Kurt, Department of Mathematics, Faculty of Educations University of Akdeniz, TR-07058 Antalya, Turkey,
E-mail address: burakkurt@akdeniz.edu.tr

Secil Bilgic, Department of Computer Programming (Distance Education), Anadolu Bil Vocational School, Istanbul Aydin University, TR-34295 Istanbul-Turkey
E-mail address: secibilgic@aydin.edu.tr