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Abstract. In this paper, we deal with the fractional Fourier transform in the
form introduced a little while ago by the first named author and his coauthors.

This transform is closely connected with the Fractional Calculus operators
and has been already employed for solving of both the fractional diffusion

equation and the fractional Schrödinger equation. In this paper, we continue

the investigation of the fractional Fourier transform, and in particular prove
some new operational relations for a linear combination of the left- and right-

hand sided fractional derivatives. As an application of the obtained results, we

provide a schema for solving the fractional differential equations with both left-
and right-hand sided fractional derivatives without and with delays and give

some examples of realization of our method for several fractional differential

equations.

1. Introduction

The prehistory of the fractional Fourier analysis started most probably with the
paper [14] by Wiener published as early as 1929. In this paper, Fourier develop-
ments of fractional order were introduced and applied for solving of certain integral
equations.

Later on, some elements of the fractional Fourier analysis have been employed
for solving mathematical problems in different applied areas and especially in signal
processing (see e.g. [8] and the references therein), where several definitions of the
fractional Fourier transform have been used in different contexts like the voice,
images, or signal processing.

Despite of the term “fractional” in the notation, the fractional Fourier trans-
forms that were introduced until recently, have nothing in common with Fractional
Calculus, i.e., with the derivatives and integrals of the fractional order. The situa-
tion changed with release of the paper [6], where a new definition of the fractional
Fourier transform Fα of order α was suggested and the following operational rela-
tion was derived:

(FαDαu)(ω) = (−i cαω)(Fαu)(ω), (1.1)
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where Dα is a suitably defined fractional derivative and cα is a constant depending
on the order α of the fractional derivative.

In contrast to the well-known operational relation (see e.g. [12])

(FDα
±u)(ω) = (∓iω)α(Fu)(ω), α ≥ 0, (1.2)

where F is the conventional Fourier transform and Dα
± are the Riemann-Liouville

fractional derivatives, the operational relation (1.1) avoids potential problems with
different branches of the multi-valued complex function (∓iω)α that might appear
while using the operational relation (1.2) and makes it an easy task to deal with
certain linear fractional differential equations.

In particular, in [3] the new fractional Fourier transform has been applied for
analytical treatment of the Cauchy problem for a partial space- and time-fractional
differential equation with the Caputo time-fractional derivative and a linear combi-
nation of the spatial left- and right-hand sided Riemann-Liouville fractional deriva-
tives. In [1], the fractional Fourier transform technique was employed to derive a
solution of the Cauchy problem for the fractional Schrödinger equation with the
quantum Riesz-Feller derivative in the case of a free particle in terms of the Fox
H-function.

In this paper, we first derive some new important properties of the fractional
Fourier transform including new operational relations. These results are then used
to work out a schema for solving the fractional differential equations with both left-
and right-hand sides fractional derivatives without and with delays. This kind of
fractional differential equations is especially important for the fractional variation
calculus, where the necessary optimality conditions of the Euler-Lagrange type
are often formulated in form of some fractional differential equations that involve
both the left- and the right-hand sided fractional derivatives (see e.g. the very
recent book [7] and numerous references therein). To illustrate our method, several
examples are provided.

The rest of the paper is organized as follows. In the second section, a definition
of the fractional Fourier transform and some known results regarding the fractional
Fourier transform that will be used in our paper are provided. In the third section,
we mainly deal with the new operational relations for the fractional derivatives that
are formulated via the fractional Fourier transform. In the last section, a general
scheme for solving of a class of fractional differential equations with the left- and
right-hand sided fractional derivatives is introduced. Moreover, the same method
is applied for the fractional differential equations with the left- and right-hand
sided fractional derivatives with delays, too. Several examples of realization of this
schema are provided, too.

2. Fractional Fourier transform

2.1. Definition and examples. Before introducing the fractional Fourier trans-
form, let us remind the reader of the definition of the conventional Fourier trans-
form. For a function f ∈ S, S being the space of rapidly decreasing test functions
on the real axis IR, the Fourier transform F and the inverse Fourier transform F−1
are defined as follows:

f̂(w) = (Ff)(w) =
1√
2π

∫ +∞

−∞
f(x)e−iwx dx, w ∈ IR, (2.1)
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f(x) = (F−1f̂)(x) =
1√
2π

∫ +∞

−∞
f̂(w)eiwx dw, x ∈ IR. (2.2)

The operator F can be defined on the spaces Lp(IR), 1 ≤ p ≤ 2 and extended to

the space S
′

of tempered distributions ([2], [13]).
For working with the fractional Fourier transform and with fractional differentia-

tion and integration operators some other spaces of functions are usually employed.
In this paper, we stay in the framework of the Lizorkin space of functions (see e.g.
[4], [5], [9] - [12]). For the sake of completeness, its definition is provided below.

Definition 2.1. Let us denote by V (IR) the set of functions v ∈ S satisfying the
conditions

dnv

dxn
∣∣
x=0

= 0, n = 0, 1, 2, . . . .

The Lizorkin space Φ(IR) is defined as the Fourier pre-image of the space V (IR) in
the space S, i.e.,

Φ(IR) = {ϕ ∈ S : ϕ̂ ∈ V (IR)}.

According to Definition 2.1, a function ϕ ∈ Φ(IR) satisfies the orthogonality
conditions ∫ +∞

−∞
xnϕ(x)dx = 0, n = 0, 1, 2, . . . .

It is known that the Lizorkin space Φ(IR) is invariant with respect to the fractional
integration and differentiation operators (this is not the case for the whole space S of
the rapidly decreasing test functions because the fractional integrals and derivatives
of the functions from the space S do not always belong to the space S).

Following [3] and [6], we now provide a definition of the fractional Fourier trans-
form.

Definition 2.2. For a function f ∈ Φ(IR), the fractional Fourier transform f̂α of
a positive order α is defined as follows:

f̂α(w) = (Fαf)(w) =
1√
2π

∫ +∞

−∞
eα(w, x)f(x) dx, w ∈ IR, (2.3)

where

eα(w, x) =

{
ei|w|

1/αx, w ≤ 0

e−i|w|
1/αx, w ≥ 0

≡ e−isign(w)|w|
1
α x. (2.4)

Of course, for α = 1 the kernel eα defined by (2.4) coincides with the kernel of
the conventional Fourier transform and thus the fractional Fourier transform of the
order 1 is just the conventional Fourier transform, i.e., F1 ≡ F .

For an arbitrary positive α the relation between the fractional and conventional
Fourier transforms is given by the following simple formula:

f̂α(w) = (Fαf)(w) ≡ (Ff)(w1) = f̂(w1), (2.5)

where

w1 = sign(w)|w| 1α . (2.6)

The formulas (2.5)-(2.6) allow us to use the known properties of the Fourier trans-
form to determine the fractional Fourier transform of the concrete functions. Let
us consider some examples.
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Example: The fractional Fourier transform of the square pulse

f(x) =

{
1, |x| < 1
0, |x| ≥ 1

can be easily determined as follows:

f̂α(w) =
1√
2π

∫ +∞

−∞
eα(w, x)f(x) dx

=
1√
2π

∫ 1

−1
e−isign(w)|w|

1
α x dx

=
2√

2π|w|1/α
sin(|w|1/α). (2.7)

Example: To determine the fractional Fourier transform of the one-sided expo-
nential function

f(x) =

{
e−x, x > 0
0, x < 0

we calculate the following integral:

(Fαf(x))(w) =
1√
2π

∫ +∞

−∞
eα(w, x)f(x) dx

=
1√
2π

∫ +∞

0

e−x(isign(w)|w|
1
α+1) dx

=
2√

2π
(
1 + i|w|1/αsign(w)

) . (2.8)

Taking into account the formula (2.8) and using integration by parts, we can
also compute the fractional Fourier transform of the function xe−xH(x), H being
the Heaviside function:

(Fαxe−xH(x))(w) =
1√
2π

∫ +∞

−∞
eα(w, x)xe−xH(x) dx

=
1√
2π

∫ +∞

0

e−x(isign(w)|w|
1
α+1)xdx

=
2

√
2π
(
1 + i|w|1/αsign(w)

)2 . (2.9)

2.2. Properties of the fractional Fourier transform. We start with some sim-
ple but important rules for calculation of the fractional Fourier transform and then
proceed with the new operational relations for the fractional derivatives. For the
proofs of the formulas (2.10) - (2.15) we refer the reader to [3].

Let f, g belong to the Lisorkin space Φ(IR) and α > 0, w ∈ IR.
Then the following transformation rules for the fractional Fourier transform are

valid:

(Fαf(x− y))(w) = eα(w, y)f̂α(w), y ∈ IR, (2.10)

(Fα f(λx))(w) =
1

λ
(Fαf)

( ω
λα

)
, λ > 0, (2.11)
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(Fαf ′(x))(w) = igα(w)f̂α(w), gα(w) =

{
−|w|1/α, w ≤ 0
|w|1/α, w ≥ 0

≡ sign(w)|w|1/α,

(2.12)

(Fαf (n)(x))(w) = (igα(w))nf̂α(w), n ∈ IN, (2.13)

i
d

dw
f̂α(w) = g′α(w)(Fα xf(x))(w), (2.14)

Fα(f ∗ g)(w) =
√

2πf̂α(w)ĝα(w), (2.15)

f̂α(w) =
1√
2π

∫ +∞

−∞
eα(w, x)f(x)dx

=
1√
2π

∫ +∞

−∞
cos
(
|w|1/αx

)
f(x)dx− i√

2π
sign(w)

∫ +∞

−∞
sin
(
|w|1/αx

)
f(x)dx.

(2.16)

We also mention an important formula for the Fractional inverse transform that
was derived in [3]:

(F−1α f)(x)=
1√
2πα

∫ +∞

−∞
eisign(w)|w|1/αx|w| 1α−1f(w) dw, α > 0, x ∈ IR. (2.17)

For f ∈ Φ(IR), the relation

F−1α Fαf = f

holds true.

As an illustration of possible applications of the transformation rules mentioned
above, let us determine the fractional Fourier transform of the Gaussian function

φ(x) =
1√
2π
e−

1
2x

2

. (2.18)

Evidently, it satisfies the differential equation

d

dx
φ(x) = −xφ(x). (2.19)

Taking into account the transformation rules (2.12) and (2.14), we get, respectively,

Fα(φ′(x)) = igα(w)φ̂α(w),

and

Fα(−xφ(x)) = −i 1

g′α(w)

d

dw
φ̂α(w).

Application of the fractional Fourier transform to the equation (2.19) leads then to
the ordinary differential equation

φ̂′α(w)

φ̂α(w)
= − 1

α
w

2
α−1 (2.20)

with the solution given by

φ̂α(w) = φ̂α(0)e−
1
2w

2
α , φ̂α(0) =

1√
2π
. (2.21)

Thus the fractional Fourier transform φ̂α of the Gaussian distribution function φ
can be written in the following form:

φ̂α(w) = φ(w1/α) =
1√
2π
e−

1
2w

2
α .
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2.3. Operational relations for the fractional derivatives. The rest of this
section is devoted to presentation of some new operational relations that will be
derived for a general fractional differential operator which contains both the left-
and the right-hand sided fractional derivatives:

(Dβ
a,bu)(x) = a(Dβ

+u)(x)+b(Dβ
−u)(x), n−1 < β ≤ n, n = [β]+1, a, b ∈ R, (2.22)

where Dβ
+ and Dβ

− are the Riemann-Liouville fractional derivatives defined on the
real axis, i.e.,

(Dβ
+u)(x) =

(
d

dx

)n
(In−β+ u)(x), (2.23)

and

(Dβ
−u)(x) =

(
− d

dx

)n
(In−β− u)(x), (2.24)

Iβ+ and Iβ− being the Riemann-Liouville fractional integral operators

(In−β+ u)(x) =
1

Γ(n− β)

∫ x

−∞
(x− t)n−β−1u(t)dt, (2.25)

(In−β− u)(x) =
1

Γ(n− β)

∫ +∞

x

(t− x)n−β−1u(t)dt. (2.26)

Let us note here that in [3] and [6] a particular case of the fractional derivative
(2.22) has been considered, namely, a one-parametric family of operators of the
type (2.22) with b = a− 1.

In the proofs of our results, we use the formula of integration by parts for the
Riemann-Liouville derivatives∫ +∞

−∞
v(x)(Dα

+u)(x)dx =

∫ +∞

−∞
(Dα
−v)(x)u(x)dx, α > 0 (2.27)

that holds true, e.g., for any u, v ∈ Φ(R) (see e.g. [6] or [12])). We also need some
auxiliary formulas that are provided in two lemmas below.

Lemma 2.3. Let w ∈ R\{0} and 0 < γ < 1. Then

(Iγ+e
−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x|w|−

γ
α

(
cos
(γπ

2

)
+ isign(w) sin

(γπ
2

))
(2.28)

and

(Dγ
+e
−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x|w|

γ
α

(
cos
(γπ

2

)
− isign(w) sin

(γπ
2

))
.

(2.29)

Proof. To prove the formula (2.28), the substitution t = x − τ is made in the
Riemann-Liouville fractional integral Iγ+ and we get the result after some elementary
transformations:(

Iγ+e
−isign(w)|w|

1
α t

)
(x) =

1

Γ(γ)

∫ x

−∞
(x− t)γ−1e−isign(w)|w|

1
α tdt

= e−isign(w)|w|
1
α x

∫ +∞

0

τγ−1eisign(w)|w|
1
α τdτ
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= e−isign(w)|w|
1
α x

[
1

Γ(γ)

∫ +∞

0

τγ−1 cos(|w|1/ατ)dτ

+isign(w)
1

Γ(γ)

∫ +∞

0

τγ−1 sin(|w|1/ατ)dτ

]
= e−isign(w)|w|

1
α x|w|−

γ
α

(
cos
(γπ

2

)
+isign(w) sin

(γπ
2

))
.

The formula (2.29) directly follows from (2.28):(
Dγ

+e
−isign(w)|w|

1
α t

)
(x) =

d

dx

(
I1−γ+ e−isign(w)|w|

1
α t

)
(x)

=
d

dx

[
e−isign(w)|w|

1
α x|w|−

1−γ
α

(
cos

(
(1− γ)π

2

)
+ isign(w) sin

(
(1− γ)π

2

))]
= e−isign(w)|w|

1
α x|w|

γ
α

(
cos
(γπ

2

)
− isign(w) sin

(γπ
2

))
.

�

Proceeding in the similar way, we prove the formulas given in the next lemma.

Lemma 2.4. Let w ∈ R\{0} and 0 < γ < 1. Then

(Iγ−e
−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x|w|−

γ
α

(
cos
(γπ

2

)
− isign(w) sin

(γπ
2

))
(2.30)

and

(Dγ
−e
−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x|w|

γ
α

(
cos
(γπ

2

)
+ isign(w) sin

(γπ
2

))
.

(2.31)

Now we formulate our main result regarding a new operational relation for the
general differential operator Dγ

a,b defined by (2.22).

Theorem 2.5. Let 0 < γ ≤ 1 and u ∈ Φ(R). Then the following operational
relation holds true for any values of the parameters a, b ∈ R:

(FαDγ
a,bu)(w) = cγ(w)|w|

γ
α (Fαu)(w), (2.32)

where cγ(w) is defined by

cγ = (a+ b) cos
(γπ

2

)
+ isign(w)(a− b) sin

(γπ
2

)
.

Proof. Using arguments similar to those employed in [6], we first get the relation

(FαDγ
a,bu)(0) = 0

for any function u that belong to the Lizorkin space Φ(R). For ω 6= 0, the formulas
(2.27), (2.29), and (2.31) are applied and we have the following chain of equalities:
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(FαDγ
a,bu)(w) =

∫ +∞

−∞
e−isign(w)|w|

1
α x(Dγ

a,bu)(x)dx

= a

∫ +∞

−∞
e−isign(w)|w|

1
α x(Dγ

+u)(x) + b

∫ +∞

−∞
e−isign(w)|w|

1
α x(Dγ

−u)(x)

= a

∫ +∞

−∞
(Dγ
−e
−isign(w)|w|

1
α t)(x)u(x)dx+ b

∫ +∞

−∞
(Dγ

+e
−isign(w)|w|

1
α t)(x)u(x)dx

= a|w|
γ
α

(
cos
(γπ

2

)
+ isign(w) sin

(γπ
2

))∫ +∞

−∞
e−isign(w)|w|

1
α xu(x)dx

+ b|w|
γ
α

(
cos
(γπ

2

)
− isign(w) sin

(γπ
2

))∫ +∞

−∞
e−isign(w)|w|

1
α xu(x)dx

= |w|
γ
α (a+ b) cos

(γπ
2

)
+ isign(w)(a− b) sin

(γπ
2

)
(Fαu)(w),

that prove the formula (2.32). �

The formula (2.32) can be applied several times and we thus get a more general
operational relation which is given by the formula (2.33) below.

Corollary 2.6. Let 0 < γ ≤ 1, u ∈ Φ(R), and n ∈ N. Then the following
operational relation holds true for any values of the parameters a, b ∈ R:

(FαDγn
a,bu)(w) = cγ,n(w)|w|

γn
α (Fαu)(w), (2.33)

where cγ,n(w) is given by

cγ,n(w) = (isign(w))n(a+ (−1)nb) cos

(
(1− γ)nπ

2

)
+ isign(w)(−a+ (−1)nb) sin

(
(1− γ)nπ

2

)
. (2.34)

Proof. First, we apply the formulas (2.29) and (2.31) and get

(Dγn
+ e−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x

× |w|
γn
α (−isign(w))n

(
cos

(
(1− γ)nπ

2

)
+ isign(w) sin

(
(1− γ)nπ

2

))
, (2.35)

and

(Dγn
− e−isign(w)|w|

1
α t)(x) = e−isign(w)|w|

1
α x

× |w|
γn
α (isign(w))n

(
cos

(
(1− γ)nπ

2

)
− isign(w) sin

(
(1− γ)nπ

2

))
. (2.36)
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Then formulas (2.27), (2.35), and (2.36) lead to the following chain of equalities

(FαDγn
a,bu)(w) =

∫ +∞

−∞
e−isign(w)|w|

1
α x(Dγn

a,bu)(x)dx

= a|w|
γn
α (isign(w))n

(
cos

(
(1− γ)nπ

2

)
− isign(w) sin

(
(1− γ)nπ

2

))
×
∫ +∞

−∞
e−isign(w)|w|

1
α xu(x)dx

+ b|w|
γn
α (−isign(w))n

(
cos

(
(1− γ)nπ

2

)
+ isign(w) sin

(
(1− γ)nπ

2

))
×
∫ +∞

−∞
e−isign(w)|w|

1
α xu(x)dx

= |w|
γn
α (isign(w))n(a+ (−1)nb) cos

(
(1− γ)nπ

2

)
+ isign(w)(−a+ (−1)nb) sin

(
(1− γ)nπ

2

)
(Fαu)(w),

and this proves the operational relation (2.33). �

3. Fractional differential equations with the left- and right-hand
sided fractional derivatives

As already mentioned in the introduction, fractional differential equations with
both left- and right-hand sides fractional derivatives appear in a natural way while
dealing with the problems of the fractional variation calculus.

In this section, a general schema for solving a particular class of such equations
is introduced and illustrated by several examples. The main idea of the method is
to employ the operational relations (2.32) and (2.33) along with other properties
of the fractional Fourier transform to reduce the fractional differential equations to
some algebraic equations in the frequency domain. Solving these equation leads to
the explicit formulas for the fractional Fourier transforms of the solutions we are
looking for. Then the inverse fractional Fourier transform is applied to determine
the solutions in the time domain.

Let us consider the following class of the fractional differential equations:

N∑
n=0

αnD
γn
a,by(x) = g(x),

where g ∈ Φ(R) and the solution is looked in Φ(R), too. By applying the operational
relation (2.33) to this equation we get the algebraic equation

N∑
n=0

αncγ,n(w)|w|
γn
α (Fαy)(w) = (Fαg)(w)

with the solution given by

(Fαy)(w) =
(Fαg)(w)∑N

n=0 αncγ,n(w)|w| γnα
.

Finally, the inverse fractional Fourier transform of the last formula leads to the
solution in the form
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y(x) =

(
F−1α

(Fαg)(w)∑N
n=0 αncγ,n(w)|w| γnα

)
(x)

that can be rewritten as the following convolution:

y(x) = (g ∗ hγ,n) (x), hγ,n(x) =

(
F−1α

1∑N
n=0 αncγ,n(w)|w| γnα

)
(x).

In the general case, a simplification of the formula for the inverse fractional Fourier
transform at the right-hand side of the solution formula is not possible, but in some
concrete cases we were able to get the closed form solutions that are presented below.
For calculation of the inverse fractional Fourier transforms in the examples given
below the CAS Mathematica has been employed.

Example: Let us consider the following fractional differential equation

Dγn
a,by(x) = g(x). (3.1)

Following our general method, we first determine the Fourier transform of the
solution:

(FαDγn
a,by(x))(w) = (Fαg(x))(w),

⇔ cγ,n(w)|w|
γn
α (Fαy)(w) = (Fαg(x))(w),

⇔ (Fαy)(w) =
1

cγ,n(w)
|w|−

γn
α (Fαg(x))(w).

Using the inverse fractional Fourier transform, Fourier transform convolution, and
then evaluating the inverse Fourier transform for a particular case of the function
hγ,n, we get a closed form solution:

y(x) = F−1α
(

1

cγ,n(w)
eisign(w)|w|

1
α x|w|−

γn
α

)
∗ g(x)

⇔ y(x) =
1√
2π

(∫ +∞

−∞

1

cγ,n(w)
eisign(w)|w|

1
α x|w|

1−γn
α −1dw

)
∗ g(x)

⇔ y(x) =
1√
2π

(
1

c2γ,n

∫ 0

−∞
e−i(−w)

1
α x(−w)

1−γn
α −1dw

+
1

c1γ,n

∫ +∞

0

eiw
1
α xw

1−γn
α −1dw

)
∗ g(x)

⇔ y(x) =
α√
2π

(
1

c2γ,n

∫ +∞

0

e−izxz−γndz +
1

c1γ,n

∫ +∞

0

eizxz−γndz

)
∗ g(x)

⇔ y(x) =
α√
2π
sign(x)|x|γn−1Γ(1− γn)

[
cos
(γnπ

2

)( −i
c2γ,n

+
i

c1γ,n

)
− isign(x) sin

(γnπ
2

)( i

c2γ,n
+

i

c1γ,n

)]
∗ g(x)

⇔ y(x) =
α√
2π

Γ(1− γn)

∫ ∞
−∞

[
C1 cos

(γnπ
2

)
− i C2 sign(x− τ) sin

(γnπ
2

)]
× sign(x− τ)|x− τ |γn−1g(τ)dτ
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with γn < 1, where:

c2γ,n = (−i)n(a+ (−1)nb) cos

(
(1− γ)nπ

2

)
− i(−a+ (−1)nb) sin

(
(1− γ)nπ

2

)
,

c1γ,n = (i)n(a+ (−1)nb) cos

(
(1− γ)nπ

2

)
+ i(−a+ (−1)nb) sin

(
(1− γ)nπ

2

)
,

C1 =
−i
c2γ,n

+
i

c1γ,n
and C2 =

i

c2γ,n
+

i

c1γ,n
.

Our method also works for equations that contain both ordinary derivatives and
combinations of the left- and right-hand sided fractional derivatives. In this case,
one has to apply the operational relation (2.13) along with the operational relations
(2.32) and (2.33).

Example: In this example, we deal with the following fractional differential
equation that also contains a first order derivative:

y′(x) +D
1
2
a,−ay(x) = g(x). (3.2)

By applying the fractional Fourier transform to both sides of the equation (3.2)
and employing the operational relations (2.12) and (2.32), we get

(Fαy′)(w) + (FαD
1
2
a,−ay)(w) = (Fαg)

⇔ (Fαy)(w) =
1

isign(w)|w|1/α + isign(w)2a sin
(
π
4

)
|w| 1

2α

(Fαg)

⇔ (Fαy)(w) =
1

i

sign(w)

|w|1/α + a
√

2|w| 1
2α

(Fαg).

Using the inverse fractional Fourier transform, convolution properties and then
evaluating the integral for the inverse Fourier transform, we obtain a closed form
formula for the solution y as follows:

y(x) =
1

i
F−1α

(
sign(w)

|w|1/α + a
√

2|w| 1
2α

)
∗ g(x)

=
iα√
2π

(∫ +∞

0

e−izx
1

z + a
√

2z
dz −

∫ +∞

0

eizx
1

z + a
√

2z
dz

)
∗ g(x)

= ha,α(x) ∗ g(x),

where

ha,α(x) =
α

2
√

2π3
sign(x) G5,3

0,0

a4x2
∣∣∣∣∣∣

1
4 ,

1
2 ,

3
4

0, 14 ,
1
2 ,

1
2 ,

3
4


for a ≥ 0 and Gm,np,q denotes the Meijer G-function.

In a similar way, we can solve the following fractional differential equation

y′ +Dγ
a,by = g. (3.3)

The solution of (3.3) is presented in terms of the fractional inverse Fourier transform
as
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y(x) = F−1α
(

1

isign(w)|w|1/α + cγ(w)|w| γα

)
∗ g(x)

=
1√
2π

∫ +∞

−∞
eisign(w)|w|

1
α x 1

isign(w)|w|1/α + cγ(w)|w| γα
dw ∗ g(x),

where cγ = (a+ b) cos
(
γπ
2

)
+ isign(w)(a− b) sin

(
γπ
2

)
.

Another important point we focus on in the rest of this section is that the
operational relations for the general fractional derivatives which we introduced in
the previous section can be combined with the shift property (2.10) of the fractional
Fourier transform and thus applied to the fractional differential equations with
delay. This combined operational property is as follows:

(FαDγ
a,bf(x− y))(w) = e−isign(w)|w|

1
α
y

|w|
γ
α

×
[
(a+ b) cos

(γπ
2

)
+ i sign(w)(a− b) sin

(γπ
2

)]
(Fαf)(w). (3.4)

The solution schema we presented at the beginning of the section can be then ap-
plied - with some evident adaption - for solving the fractional differential equations
containing both the left- and the right-sided fractional derivatives with delay. We
demonstrate this technique in the following examples.

Example: Let us consider a single-term fractional differential equation with
delay:

Dγ
a,bz(x− y) = g(x). (3.5)

Applying the fractional Fourier transform to (3.5), using the operational relation
(3.4) and then evaluating the integral for the inverse Fourier transform, we get the
following result:

(FαDγ
a,bz(x− y))(w) = (Fαg(x))(w)

⇔ e−isign(w)|w|
1
α y|w|

γ
α

[
(a+ b) cos

(γπ
2

)
+ i sign(w)(a− b) sin

(γπ
2

)]
(Fαz)(w) = (Fαg(x))(w)

⇔ z(x) = F−1α
(
Cγ,a,b(w)eisign(w)|w|

1
α y|w|−

γ
α

)
∗ g(x)

⇔ z(x) =
1√
2π

(∫ +∞

−∞
eisign(w)|w|

1
α xCγ,a,b(w)eisign(w)|w|

1
α y|w|

1−γ
α −1dw

)
∗ g(x)

⇔ z(x) =
1√
2π

(
C2
γ,a,b

∫ 0

−∞
e−i(−w)

1
α (x+y)(−w)

1−γ
α −1dw

+C1
γ,a,b

∫ +∞

0

eiw
1
α (x+y)w

1−γ
α −1dw

)
∗ g(x)

⇔ z(x) =
α√
2π

(
C2
γ,a,b

∫ +∞

0

e−iz(x+y)z−γdz + C1
γ,a,b

∫ +∞

0

eiz(x+y)z−γdz

)
∗ g(x)
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⇔ z(x) =
α√
2π

sign(x+ y)|x+ y|γ−1Γ(1− γ)
[
cos
(γπ

2

)
(−iC2

γ,a,b + iC1
γ,a,b)

− i sign(x+ y) sin
(γπ

2

)
(iC2

γ,a,b + iC1
γ,a,b)

]
∗ g(x)

⇔ z(x) =
α√
2π

Γ(1− γ)

∫ ∞
−∞

[
C3 cos

(γπ
2

)
− i C4 sign(x− τ + y) sin

(γπ
2

)]
× sign(x− τ + y) |x− τ + y|γ−1g(τ)dτ,

with γ < 1, where:

Cγ,a,b(w) =
1[

(a+ b) cos
(
γπ
2

)
+ i sign(w)(a− b) sin

(
γπ
2

)] ,
C1
γ,a,b =

1[
(a+ b) cos

(
γπ
2

)
+ i(a− b) sin

(
γπ
2

)] ,
C2
γ,a,b =

1[
(a+ b) cos

(
γπ
2

)
− i(a− b) sin

(
γπ
2

)] ,
C3 = −iC2

γ,a,b + iC1
γ,a,b and C4 = iC2

γ,a,b + iC1
γ,a,b.

Example: In this example, we consider a fractional differential equation with
two fractional derivatives of the same order but with different delays:

Dγ
a,bz(x− y) +Dγ

a,bz(x− t) = g(x). (3.6)

Following our schema, the fractional Fourier transform of the solution is first
determined:

(FαDγ
a,bz(x− y))(w) + (FαDγ

a,by(x− t))(w) = (Fαg(x))(w),

cγ,a,b(w)e−isign(w)|w|
1
α y|w|

γ
α (Fαz)(w)

+ cγ,a,b(w)e−isign(w)|w|
1
α t|w|

γ
α (Fαz)(w) = (Fαg(x))(w),

(Fαz)(w) =
eisign(w)|w|

1
α (y+t)

cγ,a,b(w) |w| γα
(Fαg(x))(w),

with γ < 1, where:

cγ,a,b(w) =
[
(a+ b) cos

(γπ
2

)
+ i sign(w)(a− b) sin

(γπ
2

)]
.

Using the inverse fractional Fourier transform, convolution property and calculating
the integral for the inverse Fourier transform, the following closed form solution can
be obtained:

z(x) = F−1α

(
eisign(w)|w|

1
α (y+t)

cγ,a,b(w) |w| γα

)
∗ g(x)

=
1√
2π

(∫ +∞

−∞

1

cγ,a,b(w)
eisign(w)|w|

1
α (x+y+t)|w|

1−γ
α −1dw

)
∗ g(x)
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=
α√
2π

(
1

c2γ,a,b

∫ +∞

0

e−iz(x+y+t)z−γdz +
1

c1γ,a,b

∫ +∞

0

eiz(x+y+t)z−γdz

)
∗ g(x)

=
α√
2π

Γ(1− γ)

∫ ∞
−∞

[
C5 cos

(γπ
2

)
− i C6 sign(x− τ + y + t) sin

(γπ
2

)]
× sign(x− τ + y + t) |x− τ + y + t|γ−1g(τ)dτ,

where:

c1γ,a,b =
[
(a+ b) cos

(γπ
2

)
+ i (a− b) sin

(γπ
2

)]
,

c2γ,a,b =
[
(a+ b) cos

(γπ
2

)
− i (a− b) sin

(γπ
2

)]
,

C5 =

(
−i
c2γ,a,b

+
i

c1γ,a,b

)
and C6 =

(
i

c2γ,a,b
+

i

c1γ,a,b

)
.

Example: The last example is a fractional differential equation with two differ-
ent fractional derivatives but with the same delay:

Dη
a,bz(x− y) +Dγ

a,bz(x− y) = g(x). (3.7)

Our solution schema leads to the fractional Fourier transform of the solution in the
following form:

(FαDη
a,bz(x− y))(w) + (FαDγ

a,bz(x− y))(w) = (Fαg(x))(w),

cη,a,b(w)e−isign(w)|w|
1
α y|w|

η
α (Fαz)(w)

+ cγ,a,b(w)e−isign(w)|w|
1
α y|w|

γ
α (Fαz)(w) = (Fαg(x))(w),

(Fαz)(w) =
eisign(w)|w|

1
α y

cη,a,b(w) |w| ηα + cγ,a,b(w) |w| γα
(Fαg(x))(w),

where

cη,a,b(w) =
[
(a+ b) cos

(ηπ
2

)
+ i sign(w)(a− b) sin

(ηπ
2

)]
.

Using the inverse fractional Fourier transform, convolution properties and trans-
forming the integral for the inverse fractional Fourier transform, we can represent
the solution in the following form:

z(x) =
α√
2π

(∫ +∞

0

e−iτ(x+y)
1

c2η,a,bτ
η + c2γ,a,bτ

γ
dτ

+

∫ +∞

0

eiτ(x+y)
1

c1η,a,bτ
η + c1γ,a,bτ

γ
dτ

)
∗ g(x),

where

c1η,a,b =
[
(a+ b) cos

(ηπ
2

)
+ i (a− b) sin

(ηπ
2

)]
and

c2η,a,b =
[
(a+ b) cos

(ηπ
2

)
− i (a− b) sin

(ηπ
2

)]
.

For some special values of the parameters a and b, the integrals at the right-hand
side of the last formula can be essentially simplified or even written down in the
closed form.
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