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IDENTITIES FOR THE VOLUME OF THE UNIT

HYPERSPHERES

M. HASSANI, A. SOFO

Abstract. The n-hypersphere with unit radius is defined as the set of points

(x1, x2, . . . , xn) ∈ Rn satisfying
∑n

k=1 x
2
k = 1. We denote the hyper-surface

area of an n-hypersphere of unit radius, and its volume, respectively by Sn

and Vn. In this paper we compute the values of summations
∑∞

n=1 V
m
n and∑∞

n=1 S
m
n for given integer m > 1. Meanwhile, we obtain various identities

for some related summations.

1. Introduction and Summary of Results

Assume that n > 1 is an integer. The n-hypersphere (or simply n-sphere)
with unit radius is defined as the set of points (x1, x2, . . . , xn) ∈ Rn satisfying∑n
k=1 x

2
k = 1. We denote the hyper-surface area of an n-hypersphere of unit radius,

and its volume, respectively by Sn and Vn. It is known that Sn = nVn is valid for
n > 0, and for n > 1 we have

Sn =
2π

n
2

Γ(n2 )
, and Vn =

π
n
2

Γ(n2 + 1)
. (1.1)

Moreover, we set S0 = 0 and V0 = 1 (see [8], pp 1438–1440). As usual, Γ denotes
the Euler’s gamma function, which is defined by Γ(x) =

∫∞
0

e−ttx−1dt for x > 0.

Because of connection of the volume of hyperspheres, and consequently the vol-
ume of the unit balls, to the Euler’s gamma function, obtaining inequalities for the
volume of the unit ball in Rn was the subject of some recent investigations (for ex-
ample see [1], [2] and [5]). Also, studying monotonicity of functions connected with
the gamma function, and consequently connected with the volume of the unit ball,
was the subject of some other recent investigations (see for example [3] and [4]).
In this paper, we obtain various identities for the volume of the unit hyperspheres.
Indeed, we assume that m > 1 is integer, and we study the summation

S(m) :=

∞∑
n=1

V mn .
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The exact value of S(1) is related by the value of erf(
√
π), where the error function,

erf(z) is the integral of the Gaussian distribution, defined by

erf(x) =
2√
π

x∫
0

e−t
2

dt.

Indeed, we show the following result.

Theorem 1.1. We have S(1) = eπ (1 + erf(
√
π))− 1 u 44.999.

Next, we obtain the value of S(2) in terms of the numbers I0(2π) and L0(2π).
The function

Iv(x) =

(
1

2
x

)v ∞∑
k=0

(
1
4x

2
)k

k! Γ(v + k + 1)
, (1.2)

is a solution of the Modified Bessel’s Equation x2y′′(x)+xy′(x)− (x2 +v2)y(x) = 0
in y(x) (see [6], pp 248–262), and we have

I0(x) =
1

π

π∫
0

cosh(x cos t)dt. (1.3)

Also, the function

Lv(x) =

(
1

2
x

)v+1 ∞∑
k=0

(
1
4x

2
)k

Γ(k + 3
2 ) Γ(v + k + 3

2 )
, (1.4)

is a solution of the Modified Struve’s Equation

x2y′′(x) + xy′(x)− (x2 + v2)y(x) = 4

(
1
2x
)v+1

√
π Γ(v + 1

2 )
,

in y(x) (see [6], pp 287–301), and we have

L0(x) =
2

π

π
2∫

0

sinh(x cos t)dt =
1

π

π∫
0

sinh(x sin t)dt. (1.5)

With these notations, we show the following result.

Theorem 1.2. We have S(2) = I0(2π) + L0(2π)− 1 u 173.112.

We can rewrite results of Theorem 1.1 and Theorem 1.2 in terms of hypergeo-
metric function, which is defined by

pFq

[
a1 a2 · · · ap
b1 b2 · · · bq

;x

]
=

∞∑
n=0

tnx
n, (1.6)

in which
tn+1

tn
=

(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)(k + 1)
x.

For special case a1 = · · · = ap = a, and b1 = b2 = · · · = bq = b, we denote the
left hand side of (1.6) simply by pHq[{a}, {b}, x]. Conversion of (1.2) and (1.4) in
terms of hypergeometric function implies

Iv(x) =

(
1
2x
)v

Γ(v + 1)
0H1

[
{ }, {v + 1}, x

2

4

]
, (1.7)
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and

Lv(x) =
(−1)

v
2

e
π
2 vi

2√
π

(
1
2x
)v+1

Γ(v + 3
2 )

1F2

[
1
3
2 v + 3

2

;
x2

4

]
. (1.8)

By applying (1.7) and (1.8), we obtain

S(2) = 0H1

[
{ }, {1};π2

]
+ 4 1H2

[
{1},

{3

2

}
;π2

]
− 1. (1.9)

Also, considering hypergeometric representation of the error function, as below

erf(x) =
2x√
π

1H1

[{1

2

}
,
{3

2

}
;−x2

]
,

we get

S(1) = 2eπ 1H1

[{1

2

}
,
{3

2

}
;−π

]
+ eπ − 1. (1.10)

More generally, the notion of hypergeometric function allows us to get an identity
for S(m) in general, as follows.

Theorem 1.3. For any integer m > 3 we have

S(m) = 0Hm−1 [{ }, {1};πm] + 2m 1Hm

[
{1},

{3

2

}
;πm

]
− 1.

We give two proofs of Theorem 1.3. The first proof is detailed and shows con-
nection to the Euler’s gamma function, and the second proof is short and direct.

2. Proof of Theorems

Our strategy for proving our results on the summation
∑∞
n=1 V

m
n , is considering

a reformed formula for Vn, by transferring the Γ-factor in its fraction from denom-
inator to numerator. This allows us to write the Γ-factor as an improper integral.
Below, we describe the desired formula for Vn.

Lemma 2.1. For any integer n > 0 we have

Vn =
2nπ

n−1
2 Γ(n+1

2 )

n!
. (2.1)

Proof. The identity Γ(x+ 1) = xΓ(x) with x = n
2 gives

Vn =
2π

n
2

n Γ(n2 )
(for n > 1).

Duplication formula for the Euler’s Gamma function, which is a special case of
Gauss’s multiplication formula (see[6], page 138), asserts that

Γ(2x) = (2π)−
1
2 22x−

1
2 Γ(x)Γ

(
x+

1

2

)
.

By using this identity with x = n
2 , and considering Γ(n) = (n− 1)! we imply

1

n Γ(n2 )
=

(2π)−
1
2 2n−

1
2 Γ(n+1

2 )

n!
.

This gives (2.1), and completes the proof. �
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Proof of Theorem 1.1. By using (2.1), we have

S(1) =

∞∑
n=1

2nπ
n−1
2 Γ(n+1

2 )

n!
=

∞∑
n=1

2nπ
n−1
2

n!

∞∫
0

t
n−1
2 e−tdt.

We change the order of summation and integration to get

S(1) =

∞∫
0

2e−t
∞∑
n=1

2n−1π
n−1
2 t

n−1
2

n!
dt

=

∞∫
0

2e−t
∞∑
n=1

(2π
1
2 t

1
2 )n−1

n!
dt =

∞∫
0

−1 + e2π
1
2 t

1
2

π
1
2 t

1
2

e−tdt.

Let us denote the integrand of the last improper integral by f(t), which is continuous
and bounded over [0,∞). Moreover, by setting

F (t) = −erf(
√
t)− eπerf(

√
π −
√
t),

we observe that d
dtF (t) = f(t). Also, we have

lim
t→∞

F (t) = eπ − 1, and lim
t→0+

F (t) = −eπerf(
√
π),

from which we obtain S(1) = eπ (1 + erf(
√
π)) − 1 u 44.999. This completes the

proof. �

Remark. Similarly, for x > 0 we obtain
∞∑
n=0

Vnx
n = eπx

2 (
1 + erf(

√
πx)
)
.

This is generating function for the sequence (Vn)n>0. Note that by repeated dif-

ferentiating one may compute the summation
∞∑
n=1

P (n)Vn for given polynomial

P (x) ∈ Z[x]. For example, we have
∞∑
n=1

nVn = 2πeπ
(
1 + erf(

√
π)
)

+ 2 u 291.022,

∞∑
n=1

n2Vn = 4πeπ (1 + π)
(
1 + erf(

√
π)
)

+ 2 u 2408.592.

Remark. We note that
∞∑
n=0

V2n =

∞∑
n=0

πn

n!
= eπ u 23.141.

Thus, we obtain
∞∑
n=1

V2n−1 = eπerf(
√
π) u 22.859.

Proof of Theorem 1.2. We consider the notion of Euler’s beta integral, which is
defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
(for a, b > 0)
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By using (2.1), we have

S(2) =

∞∑
n=1

22nπn−1Γ(n+1
2 )Γ(n+1

2 )

n! Γ(n+ 1)

=

∞∑
n=1

22nπn−1B(n+1
2 , n+1

2 )

n!
=

∞∑
n=1

22nπn−1

n!

1∫
0

(t(1− t))
n−1
2 dt.

Changing the order of summation and integration implies

S(2) =

1∫
0

4

∞∑
n=1

(
4π(t(1− t)) 1

2

)n−1
n!

dt =

1∫
0

−1 + e4π(t(1−t))
1
2

π(t(1− t)) 1
2

dt

=

1∫
0

−1

π(t(1− t)) 1
2

dt+

1∫
0

e4π(t(1−t))
1
2

π(t(1− t)) 1
2

dt = −1 +
1

π

π∫
0

e2π sin θdθ,

where the last equality obtained by applying the change of variable t = sin2 θ
2 . On

the other hand, by using (1.3) and (1.5) we get

1

π

π∫
0

ex sin θdθ =
1

π

π∫
0

(
cosh(x sin θ) + sinh(x sin θ)

)
dθ = I0(x) + L0(x).

This completes the proof. �

Remark. We follow a similar argument to get

∞∑
n=0

V 2
n x

n = I0(2πx2) + L0(2πx2) =
1

π

π∫
0

e2πx
2 sin θdθ,

for any x > 0. This is generating function for the sequence (V 2
n )n>0.

First Proof of Theorem 1.3. We have

Γ
(n+ 1

2

)
=

∞∫
0

e−xx
n−1
2 dx.

Now, assume that m > 3 is integer. We multiply above integral representation m
times to get

Γ
(n+ 1

2

)m
=

∞∫
0

...

∞∫
0

e
−

m∑
i=1

xi
m∏
i=1

x
n−1
2

i dx, (2.2)

where here and in what follows below,
∫
...
∫

is m-fold integration, and dx =
dx1 . . . dxm. Let us set

P := P(x1, . . . , xm) =

m∏
i=1

x
1
2
i .
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By using (2.1), and then (2.2) we have

S(m) =

∞∑
n=1

2m(n−1)π
m
2 (n−1)

n!m

(
2 Γ
(n+ 1

2

))m

=

∞∑
n=1

2m(n−1)π
m
2 (n−1)

n!m

∞∫
0

...

∞∫
0

2me
−

m∑
i=1

xi
Pn−1dx.

We change the order of m-fold integration and summation, to obtain

S(m) =

∞∫
0

...

∞∫
0

2me
−

m∑
i=1

xi
∞∑
n=1

(
2mπ

m
2 P
)n−1

n!m
dx

=

∞∫
0

...

∞∫
0

e
−

m∑
i=1

xi

π
m
2 P

( ∞∑
n=0

Jn(m;x1, . . . , xm)− 1

)
dx

where

Jn := Jn(m;x1, . . . , xm) =

(
2mπ

m
2 P
)n

n!m
.

We observe that
Jn+1

Jn
=

2mπ
m
2 P

(n+ 1)(n+ 1)m−1
.

Thus, the summation
∑
Jn is indeed a hypergeometric function. More precisely,

by taking x = 2mπ
m
2 P and tn = n!−m in (1.6) we obtain

S(m) =

∞∫
0

...

∞∫
0

e
−

m∑
i=1

xi

π
m
2 P

(
0Hm−1

[
{ }, {1}; 2mπ

m
2 P
]
− 1
)

dx.

We apply the change of variables xi = u2i to deduce that

∞∫
0

...

∞∫
0

e
−

m∑
i=1

xi

P
dx =

2

∞∫
0

e−t
2

dt

m

= π
m
2 .

Moreover, we get

S(m) =
2m

π
m
2

∞∫
0

...

∞∫
0

e
−

m∑
i=1

u2
i

0Hm−1

[
{ }, {1}; 2mπ

m
2

m∏
i=1

ui

]
du− 1,

where du = du1 . . . dum. By induction on m ≥ 3 one may show that

2m

π
m
2

∞∫
0

...

∞∫
0

e
−

m∑
i=1

u2
i

0Hm−1

[
{ }, {1}; 2mπ

m
2

m∏
i=1

ui

]
du

= 0Hm−1 [{ }, {1};πm] + 2m 1Hm

[
{1},

{3

2

}
;πm

]
.

This completes the proof of Theorem 1.3. �
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Second Proof of Theorem 1.3. As we see in Remark 2, computing the sum of terms
with even subscript in S(1) is straightforward. Same situation is valid when we
compute S(m). Indeed, based on this fact, one may give a direct proof of Theorem
1.3 as follows. From the functional equation of the gamma function, we have

V2n+2

V2n
=

π

n+ 1
, and

V2n+3

V2n+1
=

π

n+ 3
2

.

Together with V0 = 1 and V1 = 2, we imply that

∞∑
n=0

V m2n = 0Hm−1 [{ }, {1};πm] ,

and
∞∑
n=1

V m2n−1 = 2m 1Hm

[
{1},

{3

2

}
;πm

]
.

Combining these we get the identity for S(m). �

3. Further remarks

Remark. One may do similar analysis on
∑∞
n=1 S

m
n for given positive integer m.

Following similar arguments as in the proof of the above theorems, we imply

∞∑
n=1

Sn = 2
(
1 + πeπ

(
1 + erf(

√
π)
))

u 291.022,

∞∑
n=1

S2
n = 4

(
1 + π2 (I0(2π) + L0(2π))

)
u 6877.681.

More generally, for m > 2 we have

∞∑
n=1

Smn = (2π)m 0Hm−1 [{ }, {1};πm] + (4π)m 1Hm

[
{1},

{3

2

}
;πm

]
+ 2m.

Remark. A combinatorial recurrence argument (see [7], pp 135–136), implies Vn =
2InVn−1 for n > 1, with

In =

π
2∫

0

sinn t dt.

This gives Vn = 2n
∏n
k=1 Ik for n > 1. Thus, we have

n∏
k=1

Ik =
Vn
2n

=
(π4 )

n
2

Γ(n2 + 1)
.

Again, following similar arguments as in the proof of the above theorems, imply

∞∑
n=1

(
n∏
k=1

Ik

)
= e

π
4

(
1 + erf

(√π
2

))
− 1 u 2.925,

∞∑
n=1

(
n∏
k=1

Ik

)2

= I0

(π
2

)
+ L0

(π
2

)
− 1 u 2.021.
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More generally, for m > 3 we have

∞∑
n=1

(
n∏
k=1

Ik

)m
=
(π

4

)m
1Hm

[
{1}, {2};

(π
4

)m]
+
(π

6

)m
1Hm

[
{1},

{5

2

}
;
(π

4

)m]
+ 1.

Meanwhile, by using Stirling’s approximation for the Gamma function, we observe
that

lim
n→∞

n

(
n∏
k=1

Ik

) 1
n

=
eπ

4
.

Finally, we note that since the equality
∫ π

2

0
sinr t dt =

∫ π
2

0
cosr t dt is valid for any

real number r, thus all identities of present remark are valid for In =
∫ π

2

0
cosn t dt,

too.
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