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LOWER AND UPPER BOUNDS FOR BESSEL FUNCTIONS OF

THE FIRST KIND

ULRICH REIF

Abstract. The partial sums of the series expansion of the Bessel function Jα
of the first kind provide lower and upper bounds on the positive real axis for

order α ≥ −1/2.

1. Introduction

Let Jα(x) denote the Bessel function of the first kind of order α at x. In general,
α and x can attain complex values, but here we are only interested in the real case
α ∈ R, x ∈ R>0. Apparently, only a few explicit bounds on the absolute value are
present in the vast literature on this important special function. In that respect,
as of April 2024, the Digital Library of Mathematical Functions [DLMF, §10.14]
quotes the following:

|Jα(x)| ≤ 1, 0 ≤ α, 0 ≤ x (1.1)

|Jα(x)| ≤ J0
α(x) :=

xα

2α Γ(α+ 1)
, −1/2 ≤ α, 0 < x (1.2)

|Jα(x)| ≤

(
(x/α)e

√
1−(x/α)2

(1 +
√

1− (x/α)2)

)α
, 0 ≤ α, 0 ≤ x ≤ α (1.3)

The latter formula is sometimes referred to as Kapteyn’s inequality. The only inclu-
sion of the function values themselves we are aware of is due to Neuman [Neu04].
Assuming −1/2 ≤ α and 0 < x ≤ π/2, he shows that

Jα(x) ≥ J0
α(x) cos

(
x√

2α+ 2

)
(1.4)

Jα(x) ≤ J0
α(x)

3α+ 3

(
2α+ 1 + (α+ 2) cos

(√
3

2α+ 4
x

))
. (1.5)

In this short note, we present a new family of lower and upper bounds for order
α ≥ −1/2, which is based on the partial sums of the well-known series expansion of
Jα. A variant thereof is monotonic and thus yields a convergent sequence of nested
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intervals for all x > 0. After presenting our main result in the next section, we
compare our findings with the bounds of Neuman and Kapteyn in Section 3.

2. Result

The partial sums of the series expansion of the Bessel function Jα of the first
kind are given by

Jnα (x) :=

n∑
m=0

(−1)m
(x/2)2m+α

m! Γ(α+m+ 1)
, n ∈ N0.

They converge to Jα(x) as n→∞ for any x 6= 0, but it seems to be unknown that
they yield the following bounds:

Theorem 2.1. Let α ≥ −1/2 and x > 0. Then the inclusions

J2n−1
α (x) ≤ Jα(x) ≤ J2n

α (x) (2.1)

and

max{J2n−1
α (x),−J0

α(x)} ≤ Jα(x) ≤ min{J2n
α (x), J0

α(x)} (2.2)

hold true for all n ∈ N, where J0
α(x) = (x/2)α/Γ(α + 1). In the latter inequal-

ity, the lower bounds are monotone increasing and the upper bounds are monotone
decreasing with n.

For x < 2
√
α+ 1, the inclusion (2.1) follows immediately from the alternating

series estimation theorem and (1.2). The modest contribution of this note con-
cerns extension of the range of validity to all x > 0. The proof provided below is
completely elementary:

Proof. Define the coefficients

am :=
Γ(α+ 1)

4mm! Γ(α+m+ 1)

and the associated alternating power series

Pα(x) :=

∞∑
m=0

(−1)mamx
2m, Pnα (x) :=

n∑
m=0

(−1)mamx
2m.

Dividing (2.1) and (2.2) by J0
α(x), we obtain the equivalent inequalities

P 2n−1
α (x) ≤ Pα(x) ≤ P 2n

α (x) (2.3)

and
max

{
P 2n−1
α (x),−1

}
≤ Pα(x) ≤ min

{
P 2n
α (x), 1

}
, (2.4)

respectively, which are now verified.
With

xm :=

√
am+1

am+2
= 2
√

(m+ 2)(α+m+ 2), m ∈ N0,

we obtain

P 2n+2
α (x) = P 2n

α (x) + a2n+2x
4n+2(x2 − x22n) (2.5)

and

P 2n+1
α (x) = P 2n−1

α (x)− a2n+1x
4n(x2 − x22n−1). (2.6)
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To establish the upper bound in (2.3), we distinguish two cases: First, consider
x < x2n. We have

P 2n
α (x)− Pα(x) =

∞∑
m=2n

(−1)mam+1x
2m+2. (2.7)

The series on the right hand side is alternating, and the ratios of absolute values
of consecutive summands are bounded by

am+2x
2m+4

am+1x2m+2
=

x2

x2m
≤ x2

x22n
< 1.

Hence, the series converges and its value is positive since so is the first summand.
This implies Pα(x) ≤ P 2n

α (x) for x < x2n. Second, consider x ≥ x2n. We claim
that

P 2n
α (x) ≥ 1, x ≥ x2n. (2.8)

The proof is by induction on n, starting from P 0
α(x) = 1. Now, let us assume that

(2.8) is valid for some n ∈ N0. For x ≥ x2n+2, (2.5) yields

P 2n+2
α (x) = P 2n

α (x) + a2n+2x
4n+2(x2 − x22n)

≥ 1 + a2n+2x
4n+2(x22n+2 − x22n) ≥ 1,

where we used that P 2n
α (x) ≥ 1 by the induction hypothesis. Inequality (1.2)

implies Pα(x) ≤ 1 and thus Pα(x) ≤ P 2n
α (x) for x ≥ x2n. The proof of the lower

bound in (2.3) is completely analogous: Now, (2.7) becomes

Pα(x)− P 2n−1
α (x) =

∞∑
m=2n

(−1)mamx
2m.

Again, the series on the right hand side is alternating and the ratios of absolute
values of summands are less than 1 for x < x2n−1. This implies P 2n−1

α (x) ≤ Pα(x).
Further, (2.8) becomes

P 2n−1
α (x) ≤ −1, x ≥ x2n−1.

To start the induction, we note that the function P 1
α(x) = 1 − x2/(4α + 4) falls

below −1 for x ≥ x1 = 2
√

3(α+ 1). The induction step uses now (2.6) instead of
(2.5). Since Pα(x) ≥ −1 by (1.2), it follows P 2n−1

α (x) ≤ Pα(x) also for x ≥ x2n−1.
Concerning (2.4), let

P̄ 2n−1
α (x) := max

{
P 2n−1
α (x),−1

}
, P̄ 2n

α (x) := min
{
P 2n
α (x), 1

}
.

The upper bound P (x) ≤ P̄ 2n
α (x) is just a combination of (2.3) and (1.2). So it

remains to show that the sequence P̄ 2n
α (x) is monotone decreasing. We distinguish

cases as before: For x < x2n, (2.5) yields P 2n+2
α (x) ≤ P 2n

α (x), implying that
P̄ 2n+2
α (x) ≤ P̄ 2n

α (x). For x ≥ x2n, (2.8) yields P 2n+2
α (x) ≥ P 2n

α (x) ≥ 1 and hence
P̄ 2n+2
α (x) = P 2n

α (x) = 1. Again, the arguments for the lower bound are completely
analogous. �
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Figure 1. Bounds P 1
α, . . . , P

4
α and truncated variants (dotted) for

α = 0 and α = 10.

3. Comparison

We briefly compare our findings with Neuman’s bounds (1.4),(1.5) and Kapteyn’s
inequality (1.3). Proceeding from

Jα(x) = J0
α(x)Pα(x), Jnα (x) = J0

α(x)Pnα (x),

we disregard the elementary factor J0
α(x) = (x/2)α/Γ(α + 1) and consider bounds

on Pα(x). The basic estimate (1.2) now reads

− 1 ≤ Pα(x) ≤ 1. (3.1)

Of course, for fixed x, Theorem 1 provides arbitrarily tight inclusions Pα(x) ∈
[P 2n−1
α (x), P 2n

α (x)] for large n. However, for practical purposes, low degrees may
be the most interesting. The first few polynomials Pnα are

P 1
α(x) = 1− (x/2)2

α+ 1

P 2
α(x) = P 1

α(x) +
(x/2)4

2(α+ 1)(α+ 2)

P 3
α(x) = P 2

α(x)− (x/2)6

6(α+ 1)(α+ 2)(α+ 3)

P 4
α(x) = P 3

α(x) +
(x/2)8

24(α+ 1)(α+ 2)(α+ 3)(α+ 4)
.

They, respectively their truncated variants P̄nα , are shown in Figure 1 for orders α =
0 and α = 10 together with the target function Pα. As expected, the approximation
is highly accurate for small x.

Concerning the range of arguments where the bounds considered here are effec-
tive in the sense that they are tighter than (3.1), we observe the following: Denote
the break point of P̄nα by xnα := inf{x : |Pnα (x)| > 1}. That is, the polynomial
Pnα (x) is effective for x < xnα. Figure 2 shows xnα for n = 1, . . . , 4 as a function of
α together with the limiting values xNα = π/2 of (1.4), (1.5) and xKα = α of (1.3).
In all cases, xnα is larger than xNα and the gap is increasing with α. By contrast, for
fixed n and α large enough, xKα exceeds xnα.
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Figure 2. Neuman’s bounds N1
α, N

2
α and the polynomial bounds

P 1
α(x), . . . , P 4

α(x) are effective for x below the respective colored
lines. Kapteyn’s bound is effective in the shaded region.

Figure 3. Deviations |N i
α − Pα| and |P jα − Pα| for α = 0 and α = 10.

For a comparison with Neuman’s bounds, denote by N1
α(x) and N2

α(x) the func-
tions on the right hand side of (1.4) and (1.5) devided by J0

α(x), respectively.
Figure 3 shows some deviations |N i

α − Pα| and |P jα − Pα| for α = 0 and α = 10.
For x ≤ π/2, the lower bound N1

α(x) is better than P 1
α(x), but worse than P 3

α(x).
Equally, the upper bound N2

α(x) is better than P 2
α(x), but worse than P 4

α(x).
For a comparison with Kapteyn’s inequality, we derive from (1.3) the function

Kα(x) := Γ(α+ 1)

(
(2/α)e

√
1−(x/α)2

1 +
√

1− (x/α)2

)α
,

providing the bound |Pα(x)| ≤ Kα(x) for α > 0 and 0 ≤ x ≤ α. The gray-
shaded region in Figure 2 shows pairs (α, x) for which Kα(x) improves the bound
|Pα(x)| ≤ 1. In particular, it shows that (1.3) is not effective if α ≤ 5 or x ≤ 5. We
combine P 2n−1

α and P 2n
α to obtain the bound

|Pα(x)| ≤ Qnα(x) := max
{
|P 2n−1
α (x)|, |P 2n

α (x)|
}
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Figure 4. Bounds Q1
α, Q

2
α, and Kα on |Pα| for α = 5, 10, 20, and 40.

on the absolute value, which can now be compared with Kα(x). Numerical studies
show that Kα(x) is weaker than Q1

α(x) and Q2
α(x) for all x ≤ α if α is less than

approximately 7.5 and 10, respectively. Advantages of Kα(x) only show up for
larger values of α and x. Figure 4 illustrates the situation for orders α = 5, 10, 20,
and 40.
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