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THE FAN–TAUSSKY–TODD INEQUALITIES AND THE

LUMER–PHILLIPS THEOREM

BENEDICT BAUER, STEFAN GERHOLD

Abstract. We argue that a classical inequality due to Fan, Taussky and Todd

(1955) is equivalent to the dissipativity of a Jordan block. As the latter can

be characterised via the zeros of Chebyshev polynomials, we obtain a short
new proof of the inequality. Three other inequalities of Fan–Taussky–Todd

are reproven similarly. By the Lumer–Phillips theorem, the matrix semigroup

generated by the Jordan block is contractive. This yields new extensions of the
classical Fan–Taussky–Todd inequalities. As applications, we give an estimate

for the partial sums of a Bessel function, and a contribution to the classification

of self-similar Gaussian Markov processes.

1. Introduction

In 1955, Fan, Taussky and Todd proved the following two theorems. To obtain
the precise form stated in [7]), use the identity cos 2θ = 1− 2 sin2 θ.

Theorem 1.1. [7, Theorem 9] For real numbers a1, . . . , an, with a0 := an+1 := 0,
we have

n+1∑
k=1

(ak − ak−1)2 ≥ 2
(

1− cos
π

n+ 1

) n∑
k=1

a2k. (1.1)

Theorem 1.2. [7, Theorem 8] For real numbers a1, . . . , an, with a0 := 0, we have

n∑
k=1

(ak − ak−1)2 ≥ 2
(

1− cos
π

2n+ 1

) n∑
k=1

a2k. (1.2)

The following converse inequalities are special cases of results by Milovanović
and Milovanović [9].
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Theorem 1.3. For real numbers a1, . . . , an, with a0 := an+1 := 0, we have

n+1∑
k=1

(ak − ak−1)2 ≤ 2
(

1 + cos
π

n+ 1

) n∑
k=1

a2k. (1.3)

Theorem 1.4. For real numbers a1, . . . , an, with a0 := 0, we have
n∑
k=1

(ak − ak−1)2 ≤ 2
(

1− cos
2π

2n+ 1

) n∑
k=1

a2k. (1.4)

Alzer [1] gave short proofs of Theorems 1.3 and 1.4. In this note we give new
short proofs of Theorems 1.1 and 1.3, and analogous proofs of Theorems 1.2 and 1.4.
There are several proofs in the literature [8, 11, 12]. Our approach is symmetric in
the sense that our proofs of Theorems 1.1 and 1.3 are trivial modifications of each
other, and the same holds for Theorems 1.2 and 1.4. The proofs are based on the
dissipativity of Jordan blocks, which can be checked in a straightforward way, us-
ing the well-known zeros of Chebyshev polynomials. Besides reproving inequalities
which are already known (Section 2), we note in Section 3 that dissipativity char-
acterizes contractiveness of the matrix semigroup generated by the Jordan block,
by the Lumer–Phillips theorem. This leads to new generalizations of Theorems 1.1
and 1.2. These generalizations are then applied to estimate partial sums of the
modified Bessel function of the first kind of order zero. In Section 4, we prove strict
versions of the new inequalities. Section 5 presents an application of dissipativity
of Jordan blocks to the classification of self-similar Gaussian Markov processes.

2. Proofs

Define the Jordan block

Jn(x) :=


x 1 0

x 1
. . . 1

0 x

 ∈ Rn×n, x ∈ R.

We denote the standard scalar product on Rn by 〈·, ·〉 and the identity matrix by I,
and use the following terminology from operator theory:

Definition 2.1. (see [4, p. 52]) A matrix A ∈ Rn×n, not necessarily symmetric, is
dissipative, if 〈Aa, a〉 ≤ 0 for all a ∈ Rn.

Since

〈Jn(α)a, a〉 = α

n∑
k=1

a2k +

n∑
k=2

akak−1, a = (a1, . . . , an)T ∈ Rn,

it is clear that (1.1) and (1.3) are immediate consequences of the following lemma.

Lemma 2.2. Let α ∈ R.
(i) Jn(α) is dissipative if and only if α ≤ − cos(π/(n+ 1)).
(ii) −Jn(α) is dissipative if and only if α ≥ cos(π/(n+ 1)).

Proof. Since 2aTJn(α)a = aTJn(α)Ta+aTJn(α)a, a ∈ Rn, the first condition in (i)
is equivalent to Bn(α) := Jn(α)T + Jn(α) being negative semidefinite, i.e. all its
eigenvalues being non-positive. It is well-known [3, pp. 25-26] that detBn(x) =
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Un(x), x ∈ R, where Un(x) is the nth Chebyshev polynomial of the second kind.
Thus, any eigenvalue µ of Bn(α) must satisfy

0 = det(Bn(α)− µI) = detBn(α− 1
2µ) = Un(α− 1

2µ).

Now note that all such µ are ≤ 0 if and only if

α ≤ min
1≤k≤n

cos
kπ

n+ 1
= cos

nπ

n+ 1
= − cos

π

n+ 1
,

where cos(kπ/(n+1)), 1 ≤ k ≤ n, are the zeros of Un. The proof of (ii) is analogous;
now α must satisfy

α ≥ max
1≤k≤n

cos
kπ

n+ 1
= cos

π

n+ 1
. �

To prove Theorems 1.2 and 1.4, define

J̃n(x) :=


x 1 0

x 1
. . . 1

x 1
0 x− 1

2

 ∈ Rn×n, x ∈ R.

Lemma 2.3. For x ∈ R and n ∈ N, we have the determinant evaluation

det
(
J̃n(x)T + J̃n(x)

)
= Un(x)− Un−1(x).

As above, Un(x) denotes the nth Chebyshev polynomial of the second kind.

Proof. By a classical result on tridiagonal matrices [10, Chapter XIII], this deter-
minant is bn = bn(x), where the sequence (bk)−1≤k≤n is defined by b−1 = 0, b0 = 1,
and

bk = 2xbk−1 − bk−2, 1 ≤ k < n,

bn = (2x− 1)bn−1 − bn−2.
For k < n, this is the recurrence for the Chebyshev polynomials of the second kind,
and so bk = Uk for k < n. Finally,

bn = (2x− 1)Un−1 − Un−2 = Un − Un−1. �

Lemma 2.4. For n ∈ N, the zeros of Un(x)−Un−1(x) are (−1)k+1 cos(kπ/(2n+1)),
1 ≤ k ≤ n.

Proof. Let k ∈ {1, . . . , n} be even. We have

− cos
kπ

2n+ 1
= cos

(
π − kπ

2n+ 1

)
.

The assertion now follows from the representation

Un(cos θ) =
sin((n+ 1)θ)

sin θ
, θ ∈ R,

because

n
(
π − kπ

2n+ 1

)
=
(
n− k

2
+

1

2

)
π − (2n− k + 1)π

4n+ 2
,

(n+ 1)
(
π − kπ

2n+ 1

)
=
(
n− k

2
+

1

2

)
π +

(2n− k + 1)π

4n+ 2
.

The proof for odd k is analogous. �
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Since

min
1≤k≤n

(−1)k+1 cos
kπ

2n+ 1
= − cos

2π

2n+ 1

and

max
1≤k≤n

(−1)k+1 cos
kπ

2n+ 1
= cos

π

2n+ 1
,

Lemmas 2.3 and 2.4 show that the following result can be proven analogously to
Lemma 2.2.

Lemma 2.5. Let α ∈ R.
(i) J̃n(α) is dissipative if and only if α ≤ − cos(2π/(2n+ 1)).

(ii) −J̃n(α) is dissipative if and only if α ≥ cos(π/(2n+ 1)).

For a ∈ Rn, we have

aTJ̃n(α)a = α

n∑
k=1

a2k −
a2n
2

+

n∑
k=2

akak−1.

Now (1.2) and (1.4) easily follow, by applying Lemma 2.5 (i), (ii) with the respective
optimal values of α.

3. A generalization

In what follows, we consider the Euclidean norm on Rn, and write

‖A‖op = sup
06=a∈Rn

‖Aa‖
‖a‖

for the operator norm of an n×n matrix A. The contractivity of matrix semigroups
w.r.t. this norm is characterized by the Lumer–Phillips theorem [4, p. 52].

Theorem 3.1. [Lumer–Phillips] For any real n × n matrix Q, the following are
equivalent:

(i) ‖ exp(Qx)‖op ≤ 1 for all x ≥ 0,
(ii) Q is dissipative.

This yields a new generalization of Theorem 1.1, involving an extra parameter
x ≥ 0.

Theorem 3.2. For real numbers a1, . . . , an and x ≥ 0, we have

n−1∑
j=0

( j∑
k=0

xk

k!
an−j+k

)2

≤ exp
(

2x cos
π

n+ 1

) n∑
j=1

a2j . (3.1)

Proof. By Lemma 2.2, the Jordan block Jn(α) satisfies condition (ii) of Theorem 3.1
for α = − cos(π/(n+ 1)), and so

‖ exp(Jn(α)x)a‖2 ≤ ‖a‖2, x ≥ 0, a ∈ Rn. (3.2)

By calculating the matrix exponential of a nilpotent matrix (see [6, p. 9]),

exp
(
x(Jn(1)−I)

)
= exp


0 x 0

0 x
. . . x

0 0

 =


1 x x2

2 . . . xn−1

(n−1)!

1 x . . . xn−2

(n−2)!
. . .

1

 , x ∈ R,



THE FAN–TAUSSKY–TODD INEQUALITIES 27

we find

exp(Jn(α)x) = exp
(
x(Jn(1)− I)+αxI

)
= eαx


1 x x2

2 . . . xn−1

(n−1)!

1 x . . . xn−2

(n−2)!
. . .

1

 . (3.3)

Using this in (3.2) yields (3.1), because

‖ exp(Jn(α)x)a‖2 = e2αx
n∑

m=1

( n∑
k=m

ak
xk−m

(k −m)!

)2

= e2αx
n−1∑
j=0

( n∑
k=n−j

ak
xk+j−n

(k + j − n)!

)2

= e2αx
n−1∑
j=0

( j∑
k=0

an−j+k
xk

k!

)2

. �

As (3.1) is obviously sharp for x ↓ 0, the inequality must hold after taking
the derivative w.r.t. x at zero on both sides. An easy calculation shows that this
yields (1.1), and so Theorem 3.2 can be viewed as a generalization of Theorem 1.1.
Another special case might be worth mentioning: Putting a = (0, . . . , 0, 1) in (3.1)
yields

n−1∑
j=0

x2j

j!2
≤ exp

(
2x cos

π

n+ 1

)
, n ∈ N, x ≥ 0. (3.4)

This inequality for the partial sums of the modified Bessel function of the first

kind I0(2x) =
∑∞
j=0

x2j

j!2 seems to be new. Analogously to Theorem 3.2, we can

generalize Theorem 1.2 as follows.

Theorem 3.3. For real numbers a1, . . . , an and x ≥ 0, we have

n−1∑
j=1

( j∑
k=0

xk

k!
an−j+k

)2

+ e−xa2n ≤ exp
(

2x cos
2π

2n+ 1

) n∑
j=1

a2j .

Proof. The proof is very similar to that of Theorem 3.2. We use Lemma 2.5,
with α = − cos(2π/(2n + 1)), and calculate ‖ exp(J̃n(α)x)a‖2 in order to apply
Theorem 3.1 . �

Taking the derivative of (3.1) at zero yields (1.2) (cf. the remark after Theo-
rem 3.2). For a = (0, . . . , 0, 1), as above, (3.1) yields

n−1∑
j=0

x2j

j!2
≤ 1− e−x + exp

(
2x cos

2π

2n+ 1
)
)
, n ∈ N, x ≥ 0. (3.5)

For fixed n, the estimate (3.5) is sharper than (3.4) for large x. We conjecture
that there is a threshold x0 = x0(n) > 0 such that (3.4) gives a better bound for
0 < x < x0.
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4. Strict inequalities

We were not able the find the following strict version of the Lumer–Phillips
theorem in the literature:

Theorem 4.1. For any real n× n matrix Q, the following are equivalent:
(i) ‖ exp(Qx)‖op < 1 for all x > 0,
(ii) 〈Qa, a〉 < 0 for all a ∈ Rn \ {0}.

Analogously to Theorem 3.2, Theorem 4.1 implies the following statement, and
an analogous strict variant of Theorem 3.3.

Theorem 4.2. For real numbers a1, . . . , an, not all zero, α > cos(π/(n+ 1)), and
x > 0, we have

n−1∑
j=0

( j∑
k=0

xk

k!
an−j+k

)2

< e2xα
n∑
j=1

a2j .

It remains to prove Theorem 4.1.

Lemma 4.3. Let Q be a real n×n matrix satisfying ‖ exp(Qx)‖op ≤ 1 for all x ≥ 0.
Assume there exists x0 > 0 such that ‖ exp(Qx0)‖op = 1. Then ‖ exp(Qx)‖op = 1
for all x ≥ 0.

Proof. Choose a ∈ Rn with unit length such that ‖ exp(Qx0)a‖ = 1. Clearly, we
have ‖ exp(Qx)a‖ = 1 for all x ∈ [0, x0], since otherwise, by submultiplicativity,

‖ exp(Qx0)a‖ = ‖ exp(Q(x0 − x)) exp(Qx)a‖
≤ ‖ exp(Q(x0 − x))‖︸ ︷︷ ︸

≤1

‖ exp(Qx)a‖︸ ︷︷ ︸
<1

< 1.

Now 〈exp(Qx)a, exp(Qx)a〉 − 1 is analytic in x and vanishes on [0, x0]. Hence it
must vanish everywhere, and we infer ‖ exp(Qx)a‖ = 1 for all x. �

Lemma 4.4. Let Q be a real n × n matrix satisfying ‖ exp(Qx)‖op ≤ 1 for all
x ≥ 0. The set

WQ :=
{
a ∈ Rn : ‖ exp(Qx)a‖ = ‖a‖, x ≥ 0

}
is a subspace. Moreover, WQ and W⊥Q are invariant under exp(Qx).

Proof. For a ∈ Rn and x ≥ 0, we have

‖ exp(Qx)a‖ = ‖a‖ ⇐⇒
〈(

id− exp(QTx) exp(Qx)
)
a, a
〉

= 0.

Our assumption implies that id− exp(QTx) exp(Qx) is positive semidefinite, and
thus the condition ‖ exp(Qx)a‖ = ‖a‖ is equivalent to

a ∈ ker(id− exp(QTx) exp(Qx)).

By Lemma 4.3, this kernel is the same for every x > 0. Let u ∈W⊥Q . Then, for any
w ∈WQ we have

〈exp(Qx)u,w〉 = 〈u, exp(Qx)Tw〉 = 〈u, exp(−Qx)w〉 = 0,

since exp(−Qx)w ∈WQ. Hence W⊥Q is invariant under exp(Qx). Invariance of WQ

is clear. �
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Proof of Theorem 4.1. If (ii) holds, then ‖ exp(Qx)‖op ≤ 1, x ≥ 0, by Theorem 3.1.
Assume for the sake of contradiction that ‖ exp(Qx)‖op = 1 for some x > 0. By
Lemmas 4.3 and 4.4, there exists 0 6= a ∈ Rn such that 〈exp(Qx)a, exp(Qx)a〉 is
constant in x. Hence the derivative at x = 0 has to be zero, and thus 〈Qa, a〉 = 0,
contradicting our assumption.

Conversely, assume that there exists a 6= 0 with 〈Qa, a〉 = 0. Then we have
a ∈ ker(Q + QT), since Q + QT is negative semidefinite. Hence exp(QTx)a =
exp(−Qx)a, and we have

〈exp(Qx)a, exp(Qx)a〉 = 〈a, exp(QTx) exp(Qx)a〉
= 〈a, exp(−Qx) exp(Qx)a〉 = 〈a, a〉.

Therefore, ‖ exp(Qx)‖op = 1 for all x ≥ 0. �

5. Application to Gaussian Stochastic Processes

In [2], all centered H-self-similar Gaussian Markov (SSGM) processes with values
in Rn are characterized. In particular, it is shown that the matrix-valued covariance
function

R(s, t) = t2H exp
(
M log(t/s)

)
, H > 0, M ∈ Rn×n, 0 ≤ s ≤ t, (5.1)

yields such a process, in the sense of Definition 2.7 in [2], if and only if the matrix
semigroup (exp(Mx))x≥0 satisfies the contractivity condition

‖ exp(Mx)‖op ≤ e−Hx, x ≥ 0. (5.2)

By Theorem 3.1, this is equivalent to the dissipativity of M + H I. In the special
case where the matrix M = Jn(λ) consists of a single Jordan block, we can thus
apply Lemma 2.2 with α = λ+H to conclude:

Proposition 5.1. The covariance function

R(s, t) = t2H exp
(
Jn(λ) log(t/s)

)
, H > 0, λ ∈ R, 0 ≤ s ≤ t, (5.3)

defines an Rn-valued SSGM process if and only if

λ+H ≤ − cos
π

n+ 1
.

Of course, the matrix exponential in (5.3) can be evaluated by (3.3). For n = 1,
we obtain the condition λ+H ≤ 0, and the covariance function 5.1 defines a two-
dimensional family of rescaled Brownian motions, which is studied in [5] under the
name power Brownian motion. We note that Theorem 4.1 was also applied in [2],
in an auxiliary result leading to Volterra representations of SSGM processes for
which (5.2) is strict.
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