
Journal of Inequalities and Special Functions

ISSN: 2217-4303, URL: www.ilirias.com/jiasf

Volume 15 Issue 1(2024), Pages 11-22

https://doi.org/10.54379/jiasf-2024-1-2

A GENERALIZED Lp-BOUNDEDNESS CONDITION FOR THE

LITTLEWOOD-PALEY g-FUNCTION IN q-CALCULUS

AKRAM NEMRI

Abstract. Recently, the authors prove an Lp-boundedness condition of the
so-called q-Littlewood-Paley g-function for p ∈ (1, 2]. In this paper, we shall

generalize this condition for every p ∈ (1,∞), under an admissible condition

on the parameter q ∈ (0, 1).

1. Introduction.

As a tool for decomposing functions into different frequency components. The
Littlewood-Paley g-function is a smooth, rapidly decaying function that is localized
in frequency space and has a scaling property that makes it well-suited for analyz-
ing functions at different scales. More specifically, the Littlewood-Paley g-function
[22] is defined as the Fourier transform of a smooth, compactly supported function
with integral equal to 1. It is then multiplied by a sequence of dyadic numbers
that control the frequency localization and scaling of the function. The resulting
functions form a partition of unity in frequency space, meaning that they cover the
entire frequency domain and sum up to the original function.

The Littlewood-Paley theory has been used extensively in the study of various
functional spaces in harmonic analysis [22], including the Hardy space [21], the
Lipschitz space, and the BMO space [23]. It has also found applications in other
areas of mathematics and physics, such as number theory [1], probability theory [2]
and quantum mechanics [17].

One of the interesting fields of extensions of calculus is the so-called q-calculus
which is an important sub-field in harmonic analysis and which provides some
discrete and some refinement of the continuous harmonic analysis in sub-spaces
Rq := {±qk, k ∈ Z}, q ∈ (0, 1). Note that, for all nonzero real number x, there
exists a unique k ∈ Z such that qk+1 < x ≤ qk, this guarantees the density of the
set Rq in R.
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Many special functions have been generalized to a base q, and are usually re-
ported as q-special functions. Interest in such q-functions is motivated by the
recent and increasing relevance of q-analysis in exactly solvable models in statisti-
cal mechanics. Basic analogues of integral, derivative, Bessel function have been
introduced by Jackson [13] and Gasper [11] as q-generalizations of the power series
expansions.

Recently, there has been interest in generalizing the Littlewood-Paley theory to
higher dimensions and to more general settings [20], such as non-Euclidean spaces
and fractals. These developments have led to new insights and techniques in the
study of various problems in analysis and geometry.

The q-Littlewood-Paley g-function [17] is defined in the one dimensional Eu-
clidean space Rq,+ := {qk, k ∈ Z}, by the virtue of the q-integral [13] and the
q-derivative [11]:

g(f)(x; q2) :=

(∫ ∞
0

∣∣∣∇qPtf(x)
∣∣∣2tdqt)1/2

,

where ∇q := (Dq,x, Dq,t) is the q-analogue of the gradient and Ptf(x) is the q-
analogue of the Poisson integral studied in [18].

Our interest in this paper is to generalized the result given in [17], for any
p ∈ (1, 2] by

‖ g(f)(x; q2) ‖Lp(Rq,+) � ‖ f ‖Lp(Rq,+), f ∈ Lp(Rq,+),

where Lp(Rq,+) is the space of functions f such that

‖ f ‖Lp(Rq,+):=

[
(1− q)p

∞∑
k=−∞

|f(qk)|pqkp
] 1

p

<∞

to any number p ∈ (1,∞), under an admissible condition on the parameter q

ln(1 + q)/ ln q ∈ Z. (1.1)

This major result will be proved in the last section of this paper.

This work is organized as follows. In the second section, a brief review on some
q-harmonic analysis results related to q-calculus is developed. In the third section,
we present our main result by the virtue of the q-Poisson kernel and q-Poisson
integral and we present some technical lemmas that will be useful for the proof of
the main result of this paper. The last section will be devoted with the proof of
our main result, using the q-Hardy-Littlewood maximal function Mq(f).

2. Some q-calculus Toolkit.

The aim of this section is to recall some notions of q-calculus. For q ∈ (0, 1),
denote

Rq = {±qk, k ∈ Z}, Rq,+ = {qk, k ∈ Z}, R̃q,+ = {qk, k ∈ Z} ∪ {0}.
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For a, b ∈ Rq,+ (a < b) and a function f given on [a, b], the q-integral [13] is defined
by ∫ b

a

f(x)dqx := (1− q)
( ∞∑
n=0

(bf(bqn)− af(aqn))qn
)
.

The improper integral is defined in the following way∫ ∞
0

f(x)dqx := (1− q)
+∞∑

k=−∞

f
(
qk
)
qk. (2.1)

Note that for a, b ∈ Rq,+, we may also have an analogue of the change variables
theorem∫ ∞

0

f(ax)dqx = a−1
∫ ∞
0

f(x)dqx,

∫ b

0

f(ax)dqx = a−1
∫ ab

0

f(x)dqx. (2.2)

We denote by µ the measure on Rq,+ given by

dqµ(y) =
(1 + q

1− q

)−1/2
Γ−1q2 (1/2)dqy = cqdqy, (2.3)

where Γq2 is the q-gamma function [11].

The q-derivative of any function f , Dq,xf [11] is defined by

Dq,xf(x) :=
f(x)− f(qx)

(1− q)x
, x, q 6= 0,

and the second derivative operator ∆q,x := Λ−1q,xD
2
q,x, where the q-shift operators is

(Λ−1q,xf)(x) := f(q−1x) and

∆q := ∆q,x + ∆q,t, (x, t) ∈ Rq × Rq,+. (2.4)

Notice that using the definition of the q-derivative, for any k = 0, 1, 2, ...

Dk
q,xf(x) =

(−1)k

xk(1− q)k
k∑
i=0

(−1)i
(q; q)k

(q; q)i(q; q)k−i
q(

k−i
2 )f(qk−ix),

(
k

2

)
= k(k − 1)/2,

(2.5)
and

∆n
q,xf(x) =

q(2−n)n(q; q)2n
(1− q)2n

n∑
k=−n

(−1)n−k
q(n−k)(n−k−1)/2

(q; q)n−k(q; q)n+k
f(qkx), (2.6)

where (a; q)n is the q-shifted factorials are defined by

(a; q)0 = 1, (a; q)n = (1− a)(1− aq)...(1− aqn−1), (a; q)∞ =

∞∏
k=0

(1− aqk).

Moreover, in [17] the author proves for all n ∈ N, that

Dq,x(fn(x)) =
fn(x)− fn(qx)

f(x)− f(qx)
Dq,xf(x) =

[ n−1∑
k=0

fk(x)f−k(qx)
]
fn−1(qx)Dq,xf(x),

(2.7)
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D2
q,x(fn(x)) = q

[ n−1∑
k=0

k−1∑
i=0

f i(x)f−i(qx).
(
Dq,xf(qx)

)(
Dq,xf(x)

)
+ q

n−1∑
k=0

n−k−2∑
i=0

f i(q2x)f−i(qx)×
(
Dq,xf(qx)

)2]
fn−2(qx) (2.8)

+
[ n−1∑
k=0

fk(x)f−k(qx)
]
D2
q,xf(x)fn−1(qx). (2.9)

Furthermore,

∆q,x(fn(x)) = q
[ n−1∑
k=0

k−1∑
i=0

f i(q−1x)f−i(x).
(
Dq,xf(x)

)(
Dq,xf(q−1x)

))
+ q

n−1∑
k=0

n−k−2∑
i=0

f i(qx)f−i(x)

×
(
Dq,xf(x)

)2]
fn−2(x) +

[ n−1∑
k=0

fk(q−1x)f−k(x)
]
fn−1(x)∆q,xf(x).

Note that when q ↑ 1−, equation (2.7) tends to nfn−1(x)f ′(x) and (2.8) to nfn−1(x)f ′′(x)+
n(n− 1)fn−2(x)f ′(x).

We introduce some q-functional spaces which we need in this work.

. D∗,q(Rq), the space of even functions infinitely q-differentiable on Rq with
compact support in Rq. We equip this space with the topology of the uni-
form convergence of the functions and their q-derivatives.

. Lp(Rq,+), p ∈ [1,+∞], the space of functions f such that ‖ f ‖Lp(Rq,+)<
+∞, where

‖ f ‖Lp(Rq,+):=

[∫ ∞
0

|f(x)|pdqµ(x)

] 1
p

, for p <∞,

with dqµ(x) given by (2.3), and

‖ f ‖L∞(Rq,+)= sup
x∈Rq,+

| f(x) |, for p =∞.

Note that, in [9] the authors prove that

‖ f ‖Lp(Rq,+)= sup
{h∈D∗,q(Rq);‖h‖Lm(Rq,+)=1}

∣∣∣ ∫ ∞
0

f(x)h(x)dqµ(x)
∣∣∣, 1/p+ 1/m = 1.

(2.10)

The one-parameter family of q-exponential functions with α ∈ R has been consid-
ered in [10]

E(α)
q (x) :=

∞∑
n=0

qαn
2/4 (1− q)n

(q; q)n
xn, x ∈ R. (2.11)

Two particular cases of this family with α = 0 and α = 1 are well known: they are
the q-exponential

eq(x) = E(0)
q (x) :=

1

((1− q)x; q)∞
=

∞∑
n=0

(1− q)n

(q; q)n
xn,
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and its reciprocal

Eq(x) = e−1q (x) = E(1)
q (−q−1/2x) := (−(1− q)x; q)∞ =

∞∑
n=0

qn(n−1)/2
(1− q)n

(q; q)n
xn.

In [7], A. Fitouhi et al. study the q-analogue of the well-known heat kernel of one

dimensional space K(t, x) = 1√
4πt

e−x
2/4t;x ∈ R, t > 0 denoted G(x, t; q2) and given

by

G(x, t; q2) :=
1

A(t, q2)
eq2(− x2

q(1 + q)t
),

where A(t, q2) = q−
1
2 (1− q) 1

2

(− 1−q
1+q

1
t ,−

1+q
1−q q

2t; q2)∞

(− 1−q
1+q

1
qt ,−

1+q
1−q q

3t; q2)∞
, t > 0.

3. Main result

In this section, we define and study the Lp-boundedness of the Littlewood-Paley
g-function, for p ∈ (1,∞). For more backgrounds on the q-Littlewood Paley g-
function, q-Poisson kernel, q-Hardy-Littlewood maximalMq(f) function the reader
may be referred to [17, 18].

The q-Poisson kernel Pt(x; q2) and the q-Poisson integral u(f)(x, t; q2) of any
function f ∈ Lp(Rq,+) have been developed and studied

Pt(x; q2) := P (t, x; q2) = dq
t

t2 + x2
, dq =

1

Γq2( 1
2 )A( 1

q(1+q)2 ; q2)
, (3.1)

u(f)(x, t; q2) = Ptf(x) =

∫ ∞
0

f(y)Tq,xPt(y; q2)dqµ(y), (3.2)

here, Tq,x is the q-even translation operators [8] are defined by

Tq,xf(y) :=

∫ ∞
0

f(z)Dq(x, y, z)dqµ(z),

where Dq(x, y, z) is defined for x and y in Rq,+ by

Dq(x, y, z) :=

∫ ∞
0

cos(xt; q2) cos(yt; q2) cos(zt; q2)dqµ(t),

satisfying the commutativity property [6],∫ ∞
0

Tq,xf(y)g(y)dqµ(y) =

∫ ∞
0

f(y)Tq,xg(y)dqµ(y). (3.3)

The q-cosine function is given in [14] as a series of functions

cos(x; q2) :=

∞∑
n=0

(−1)n
qn(n+1)

(q; q)2n
x2n =

∞∑
n=0

(−1)nbn(x; q2).

Recalling that u(f)(x, t; q2) can be written [18] as

u(f)(x, t; q2) =

∫ +∞

0

Eq2(−q2y)
√
y

T
t2

y f(x)dq2µ(y),

where

T tf(x) = (G(., t/q(1 + q)2; q2) ∗q f)(x), (3.4)
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“∗q” is the q-convolution product [8] defined by

f ∗q g(x) =

∫ ∞
0

Tq,xf(y)g(y)dqµ(y).

The following lemmas hold.

Lemma 3.1. [17]

(i) Dq,tPt(x; q2) = dq
x2 − qt2

(t2 + x2)(q2t2 + x2)
and Dq,xPt(x; q2) = −dq (1+q)tx

(t2+x2)(t2+q2x2) .

(ii)

∆q,tPt(x; q2) = dq
q2t

1− q
(q3 + q2 − q−1 − 1)x2 + (1− q2)t2

(t2 + x2)(t2 + q2x2)(q2t2 + x2)
,

∆q,xPt(x; q2) = −dq
(1 + q)q2t

1− q
(1− q)t2 + (q2 − q−1)x2

(t2 + x2)(t2 + q2x2)(q2t2 + x2)
,

Dq,xDq,tPt(x; q2) = Dq,tDq,xPt(x; q2) = −dq
1

1− q
(1− q2)x4 + (q3 + q2 − q−1 − 1)x2t2

(t2 + x2)(t2 + q2x2)(q2t2 + x2)
.

(iii) For all k ∈ N, ‖Dk
q,tPt(.; q

2)‖L∞(Rq,+) ≤ Cqt−(k+1).

Lemma 3.2. [17] Let f ∈ D∗,q(Rq) be a positive function and p ∈ (1,∞). Then

(i) u(f)(x, t; q2) ≥ 0.
(ii) ∆qu(f)(x, t; q2) = ∆q,xu(f)(x, t; q2) + ∆q,tu(f)(x, t; q2) = 0.

(iii) For all k ∈ N, there exists Cq > 0 such that
∣∣∣Dk

q,tu(f)(x, t; q2)
∣∣∣ ≤ Cqt−(k+1).

Lemma 3.3. [17] Let f, h ∈ D∗,q(Rq) be positive functions and p ∈ (1,∞). Then

(i) lim
R→∞

∫ R

0

∫ R

0

∆q,t(u
p(f)(x, t))tdqtdqµ(x) =

∫ ∞
0

fp(x)dqµ(x).

(ii) lim
R→∞

∫ R

0

∫ R

0

∆q,x(up(f)(x, t))tdqµ(x)dqt = 0.

(iii)

∫ ∞
0

∫ ∞
0

∆q(u
p(f)(x, t))tdqtdqµ(x) =‖ f ‖Lp(Rq,+).

(iv)

∫ ∞
0

∫ ∞
0

∆q(u
p(f)(x, t)u(h)(x, t))tdqtdqµ(x) =

∫ ∞
0

fp(x)h(x)dqµ(x).

Lemma 3.4. [17] For any f1, f2 ∈ D∗,q(Rq), there exists Aq > 0, such that∫ ∞
0

∫ ∞
0

tDq,tu(f1)(x, t; q2)Dq,tu(f2)(x, t; q2)dqtdqµ(x) = Aq

∫ ∞
0

f1(x)f2(x)dqµ(x).

Moreover

∆q(u(f)p(x, t; q2)) = q
[ p−1∑
k=0

k−1∑
i=0

u(f)i(q−1x, t; q2)f−i(x, t; q2)·

(
Dq,xu(f)(x, t; q2).Dq,xu(f)(q−1x, t; q2)

+Dq,tu(f)(x, t; q2)×Dq,tu(f)(x, q−1t; q2)
)

+q

p−1∑
k=0

p−k−2∑
i=0

u(f)i(qx, t; q2)u(f)−i(x, t; q2)
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×
(
∇qu(f)(x, t; q2)

)2]
u(f)p−2(x, t; q2), (F)

and ∣∣∣∇q,xu(f)(x, t; q2)
∣∣∣2 ≤ 2q−2

p(p− 1)
u(f)2−p(x, t; q2)∆q(u(f)p(x, t; q2)). (3.5)

Furthermore, T tf(x) satisfies

‖ T tf(x) ‖Lp(Rq,+)≤‖ f ‖Lp(Rq,+) . (3.6)

Definition 3.5. Let f ∈ D∗,q(Rq). The q-Hardy-Littlewood maximal Mq(f) func-
tion is defined by

Mq(f)(x) := sup
t∈Rq,+

| u(f)(x, t) |, x ∈ Rq.

Proposition 3.6. [17] Let f ∈ D∗,q(Rq) and p ∈ (1,∞). Then there exists Cp,q > 0
such that

‖ Mq(f)(x) ‖Lp(Rq,+)≤ Cp,q ‖ f ‖Lp(Rq,+) .

Definition 3.7. The q-Littlewood-Paley g-function for f ∈ D∗,q(Rq) is given by

g(f)(x; q2) :=

(∫ ∞
0

∣∣∣∇qu(f)(x, t; q2)
∣∣∣2tdqt)1/2

,

where u(f)(x, t) is the q-Poisson integral and ∇qu(f) :=
(
Dq,xu(f), Dq,tu(f)

)
it is

q-gradient vector, verifying∣∣∣∇qu(f)(x, t; q2)
∣∣∣2 := (Dq,xu(f)(x, t; q2))2 + (Dq,tu(f)(x, t; q2))2.

In the present paper, we consider and prove a general result developed in [17].
The following main theorem holds.

Theorem 3.8. For p ∈ (1,∞) and q ∈ (0, 1) satisfying the admissible condition
(1.1), there exist two constants Ap,q > 0 and Bp,q > 0, such that for f ∈ Lp(Rq,+),

Bp,q ‖ f ‖Lp(Rq,+)≤‖ g(f)(x; q2) ‖Lp(Rq,+)≤ Ap,q ‖ f ‖Lp(Rq,+) .

4. Proof of main result

In the following, the proof of Theorem 3.8. will be done in three steps. The
first one concerns the range 1 < p ≤ 2 and was proved in [17]. In the second
step, using a maximum principle, we prove the result for 4 ≤ p < ∞. Finally the
interpolation theorem permits to conclude for 2 < p < 4. We need the following
technical lemmas, which we need in the proof of the Theorem 3.8.

Lemma 4.1. Let f ∈ D∗,q(Rq). Then∣∣∣∇qu(f)(x, (1 + q)t; q2)
∣∣∣2 ≤ Pt∣∣∣∇qu(f)(x, t; q2)

∣∣∣2,
where the operator Pt is given by (3.2).
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Proof. Let f ∈ D∗,q(Rq). Putting F (x, t; q2) =
(
∇qu(f)(x, t; q2)

)2
. We can

verified easily that F is continuous, even with respect to the variable x, infinitely
q-differentiable on Rq × Rq,+. Moreover, from (F), (2.10) and Lemma 3.1.(ii)

∆qF (x, t; q2) = ∆q

[(
Dq,xu(f)(x, t; q2)

)2
+
(
Dq,tu(f)(x, t; q2)

)2]
= q

[
∆q,xu(f)(q−1x, t; q2)∆q,xu(f)(x, t; q2)

+ ∆q,tu(f)(x, q−1t; q2)∆q,tu(f)(x, t; q2)
]

+ qDq,xDq,tu(f)(x, t; q2)
[
Dq,xDq,tu(f)(q−1x, t; q2)

+ Dq,tDq,xu(f)(x, q−1t; q2)
]

+ q2
([
∇q(Dq,xu(f)(x, t; q2))

]2
+
[
∇q(Dq,tu(f)(x, t; q2))

]2)
≥ 0.

On the other hand, for s ∈ Rq,+ let H(x, t; q2) = Pt
∣∣∣∇qu(f)(x, t; q2)

∣∣∣2 − F (x, s +

qt; q2), satisfies H(x, 0; q2) = 0 and from Lemma 3.2.,

∆qH(x, t; q2) = ∆qPt
∣∣∣∇qu(f)(x, t; q2)

∣∣∣2 −∆qF (x, s+ qt; q2) ≤ 0.

So using the maximum principle of Hopf [24], the result follows by taking s = t. �

Lemma 4.2. Let f, h ∈ D∗,q(Rq) and q ∈ (0, 1) satisfying the admissible condition
(1.1). Then∫ ∞
0

(
g(f)(x)

)2
h(x)dqµ(x) ≤ (1+q)2

∫ ∞
0

∫ ∞
0

t | ∇qu(f)(x, t; q2) |2 u(h)(x, t; q2)dqµ(x)dqt,

where the operator Pt is given by (3.2).

Proof. Before starting the proof of the lemma, noting that from property (3.3)
the operator Pt is self-adjoint. Now, from Lemma 4.1., we have∫ ∞

0

(
g(f)(x)

)2
h(x)dqµ(x) =

∫ ∞
0

∫ ∞
0

t | ∇qu(f)(x, t; q2) |2 h(x)dqµ(x)dqt

≤
∫ ∞
0

∫ ∞
0

tPt(1+q)
−1

| ∇qu(f)(x, (1 + q)−1t; q2) |2 h(x)dqµ(x)dqt.

Now by (2.2), to make the change of variable s = t(1 + q)−1 a sense we need that s
must be in Rq,+. Hence s = t(1 + q)−1 = qk and then for any t ∈ Rq,+, there exist
i ∈ Z such that qi(1 + q)−1 = qk, which leads to (1 + q)−1 = qk−n must be in Rq,+.
Then the admissible condition ln(1 + q)/ ln q ∈ Z given by (1.1) follows. So, we get
easily the result. �

Lemma 4.3. Let f, h ∈ D∗,q(Rq) be positive functions. Then∫ ∞
0

(
g(f)(x)

)2
h(x)dqµ(x) ≤

q−2(1 + q)3
(∫ ∞

0

f2(x)h(x)dqµ(x) +

∫ ∞
0

Mq(f)(x)g(f)(x)g(h)(q−1x)dqµ(x)
)
.
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Proof. Using (F) for p = 2, we get ∆q(u
2(f)(x, t; q2)) = 2q2

(
∇qu(f)(x, t; q2)

)2
.

By Lemma 4.2, we have ∫ ∞
0

(
g(f)(x)

)2
h(x)dqµ(x) ≤

(1 + q)2

2q2

∫ ∞
0

∫ ∞
0

t∆q(u
2(f)(x, t; q2))u(h)(x, t; q2)dqµ(x)dqt. (4.1)

Now, applying (2.4) we get easily the following identity

∆q(u.v) = v(q−1x, t)∆q(u) + u(qx, t)∆q(v)+

(1 + q)
[
Dq,xv(q−1x, t)Dq,xu+Dq,tv(x, q−1t)Dq,tu(x, t; q2)

]
,

with u = u2(f)(x, t; q2) and v = u(h)(x, t; q2), we deduce that

∆q(u
2(f)(x, t; q2))u(h)(x, t; q2) = ∆q(u

2(f)(x, t; q2)u(h)(x, t; q2))−

(1+q)
[
Dq,xu(h)(q−1x, t; q2)×Dq,x(u2(f)(x, t; q2))+Dq,tu(h)(x, q−1t)Dq,t(u

2(f)(x, t; q2))
]
.

Then applying (2.8), Lemma 3.2.(ii), Lemma 3.3.(iv) and the elementary identity

(x1x2 + y1y2)2 ≤ (x21 + y21)(x22 + y22)

to (4.1), we get respectively∫ ∞
0

∫ ∞
0

t∆q(u
2(f)(x, t; q2)u(h)(x, t; q2))dqµ(x)dqt =

∫ ∞
0

f2(x)h(x)dqµ(x),

and ∫ ∞
0

∫ ∞
0

t
[
Dq,xu(h)(q−1x, t; q2)Dq,x(u2(f)(x, t; q2))+

Dq,tu(h)(x, q−1t)Dq,t(u
2(f)(x, t; q2))

]
dqµ(x)dqt

≤ 2

∫ ∞
0

Mq(f)(x)

∫ ∞
0

t
[
Dq,xu(h)(q−1x, t; q2)Dq,x(u(f)(x, t; q2))+

Dq,tu(h)(x, q−1t)Dq,t(u(f)(x, t; q2))
]
dqtdqµ(x)

≤ 2

∫ ∞
0

Mq(f)(x)

∫ ∞
0

t
∣∣∣∇qu(h)(x, t; q2)

∣∣∣∣∣∣∇q(u(f)(x, t; q2))
∣∣∣dqtdqµ(x). �

Theorem 4.4. For p ∈ (1,∞) and q ∈ (0, 1) satisfying the admissible condition
(1.1), there exists a constant Ap,q such that for all f ∈ D∗,q(Rq), we have

‖ g(f) ‖Lp(Rq,+)≤ Ap,q ‖ f ‖Lp(Rq,+) .

Proof. The result will be proved in three steps. The first one is for 1 < p ≤ 2 which
was proved in [17]. The second steps using a maximum principle for p ≥ 4. In order
to prove this, we will use Lemma 4.1., Lemma 4.2. and Lemma 4.3., we can show
for 4 ≤ p <∞, using the fact that

‖ g(f) ‖2Lp(Rq,+)= sup
h

∫ ∞
0

g2(f)(x)h(x)dqµ(x),
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with ‖ g(f) ‖Lm(Rq,+)≤ 1, for 1 < m ≤ 2 and 2/p + 1/m = 1. Applying property
(3.3) to the inequality in Lemma 4.3., we obtain∫ ∞

0

Mq(f)(x)g(f)(x)g(h)(q−1x)dqµ(x) ≤

‖ Mq(f) ‖Lp(Rq,+)‖ Mq(f) ‖Lp(Rq,+)‖ g(h) ‖Lm(Rq,+) .

So ∫ ∞
0

(
g(f)(x)

)2
h(x)dqµ(x) ≤

q−2(1 + q)3
(
‖ f ‖Lp(Rq,+) + ‖ Mq(f) ‖Lp(Rq,+)‖ g(f) ‖Lp(Rq,+)‖ g(h) ‖Lm(Rq,+)

)
.

Now, using Proposition 3.6, we deduce∫ ∞
0

(
g(f)(x)

)2
h(x)dqµ(x) ≤

q−2(1 + q)3
(
‖ f ‖2Lp(Rq,+) +Cp,q ‖ f ‖Lp(Rq,+)‖ g(f) ‖Lp(Rq,+)

)
.

note that m = p/(p− 2) ∈ (1, 2] this implies that

‖ g(f) ‖2Lp(Rq,+) − q−2(1 + q)3Cp,q ‖ f ‖Lp(Rq,+)‖ g(f) ‖Lp(Rq,+) −

q−2(1 + q)3 ‖ f ‖2Lp(Rq,+)≤ 0.

The study of the sign of the elementary quadratic expression in ‖ g(f) ‖Lp(Rq,+)

shows that

‖ g(f) ‖Lp(Rq,+)≤
(
q−2(1+q)3Cp,q+q

−1(1+q)3/2
√

1 + q−2(1 + q)3C2
p,q

)
‖ f ‖Lp(Rq,+) .

Hence, for p ≥ 4, the constant Ap,q is given by

Ap,q = q−2(1 + q)3Cp,q + q−1(1 + q)3/2
√

1 + q−2(1 + q)3C2
p,q.

Finally, for the third steps for 2 < p < 4 by applying the Marcinkiewicz interpola-
tion theorem (for θ = 2− 4/p), we obtain that g(f) is bounded from Lp(Rq,+) into
itself. Hence the constant Ap,q is given by

Ap,q = A
4/p−1
2,q A

2−4/p
4,q .

This completes the proof of the theorem. �

Consequently, from the density of D∗,q(Rq) in Lp(Rq,+) ([9], Theorem 4.28), we
have the following result.

Theorem 4.5. For p ∈ (1,∞) and q ∈ (0, 1) satisfying the admissible condition
(1.1), there exists a constant Ap,q such that for all f ∈ Lp(Rq,+), we have

‖ g(f) ‖Lp(Rq,+)≤ Ap,q ‖ f ‖Lp(Rq,+) .

To prove the left hand side of Theorem 3.8., we use the following theorem.

Theorem 4.6. For p ∈ (1,∞) and q ∈ (0, 1) satisfying the admissible condition
(1.1), there exists a constant Bp,q such that for all f ∈ Lp(Rq,+), we have

Bp,q ‖ f ‖Lp(Rq,+)≤‖ g(f) ‖Lp(Rq,+) .
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Proof. To prove the result, we will use the function g1(f) given in [19] by

g1f(x; q2) :=

(∫ ∞
0

t
∣∣∣Dq,tu(f)(x, t; q2)

∣∣∣2dqt)1/2

, f ∈ Lp(Rq,+).

Obviously, we have

g1(f)(x; q2) ≤ g(f)(x; q2). (4.2)

Now, computing relations (2.10), (4.2), Lemma 3.4. and Holder inequality, give
that there exist Aq > 0 such that

1

Aq

∣∣∣ ∫ ∞
0

f(x)h(x)dqµ(x)
∣∣∣ ≤ ∫ ∞

0

g1(f)(x; q2)g1(h)(x; q2)dqµ(x)

≤ ‖ g1(f) ‖Lp(Rq,+)‖ g1(h) ‖Lm(Rq,+), 1/p+ 1/m = 1

≤ Cq,m ‖ g1(f) ‖Lp(Rq,+)

≤ Cq,m ‖ g(f) ‖Lp(Rq,+) .

So, by taking the supremum, we have

Bq,p ‖ f ‖Lp(Rq,+)≤‖ g(f) ‖Lp(Rq,+), Bq,p = 1/AqCq,m.

�
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