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A CLASS OF MORE ACCURATE HILBERT-TYPE

INEQUALITIES INVOLVING PARTIAL SUMS

LAITH EMIL AZAR, TSERENDORJ BATBOLD, NIZAR KH. AL-OUSHOUSH, MARIO

KRNIĆ

Abstract. The main goal of this paper is a study of a class of more ac-
curate Hilbert-type inequalities involving partial sums. We first derive a

discrete Hilbert-type inequality involving two partial sums and the kernel

1/max(mλ, nλ). Then, by virtue of the Hardy inequality, we establish a
weaker version of the latter relation involving only one partial sum, as well

as the corresponding equivalent form. In addition, we prove that the con-

stants appearing on the right-hand sides of the established inequalities are the
best possible. Finally, we also give integral analogues of the corresponding

discrete results.

1. Introduction

Let (am)m∈N, (bn)n∈N be positive real sequences such that 0 <
∑∞
m=1 a

2
m < ∞

and 0 <
∑∞
n=1 b

2
n <∞. Then, there holds the inequality

∞∑
m=1

∞∑
n=1

ambn
m+ n

< π

( ∞∑
n=1

a2
n

) 1
2
( ∞∑
n=1

b2n

) 1
2

(1.1)

and its equivalent form

∞∑
n=1

( ∞∑
m=1

am
m+ n

)2

< π2
∞∑
n=1

a2
n. (1.2)

Here, the constants π and π2 are the best possible. This means that they can not be
replaced with a smaller constants so that (1.1) and (1.2) remain valid. Inequality
(1.1) is known as the Hilbert inequality (see, e.g. [5]) and it is important in analysis
and its applications. On the other hand, the equivalent form (1.2) is often referred
to as the Hardy-Hilbert inequality.

Although classical, the above pair of relations is nowadays also interesting topic
to numerous mathematicians. Roughly speaking, the study of Hilbert-type inequal-
ities can be divided into two directions. The first direction includes relations with
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more general kernels and weight functions, as well as the extensions to more gen-
eral spaces. The second direction refers to refinements of the existing Hilbert-type
inequalities. For a historical overview of the Hilbert inequality, including various
proofs and diverse applications, the reader is referred to [5]. On the other hand,
the most relevant recent results about the Hilbert-type inequalities are collected in
monographs [3] and [11].

The basic step in our research is the well-known Hilbert-type inequality (see [5],
Theorem 341)

∞∑
n=1

∞∑
m=1

ambn
max(m,n)

< 4

( ∞∑
n=1

a2
n

) 1
2
( ∞∑
n=1

b2n

) 1
2

, (1.3)

and its equivalent form

∞∑
n=1

( ∞∑
m=1

am
max(m,n)

)2

< 42
∞∑
n=1

a2
n, (1.4)

which are valid under the same conditions as inequalities (1.1) and (1.2). In addi-
tion, the constants appearing on the right-hand sides of these inequalities are the
best possible. Furthermore, the integral form of (1.3) asserts that∫ ∞

0

∫ ∞
0

f(x)g(y)

max(x, y)
dxdy < 4

(∫ ∞
0

f2(x)dx

) 1
2
(∫ ∞

0

g2(x)dx

) 1
2

, (1.5)

where f and g are non-negative integrable functions on (0,∞) such that 0 <∫∞
0
f2(x)dx < ∞ and 0 <

∫∞
0
g2(x)dx < ∞. Of course, by replacing the sum

with an integral and the sequence with a non-negative integrable function, one ob-
tains integral form of (1.4). The constants appearing on the right-hand sides of
these integral inequalities are also the best possible.

In the literature, inequalities (1.2) and (1.4) are usually known as the Hardy-
Hilbert-type inequalities, since their general form implies the famous Hardy inequal-
ity (for more details, see [11] and [10]). Recall that if p > 1 and F (x) =

∫ x
0
f(t)dt,

where f is a non-negative integrable function, then there holds the inequality∫ ∞
0

(
F (x)

x

)p
dx <

(
p

p− 1

)p ∫ ∞
0

fp(x)dx, (1.6)

where the constant
(

p
p−1

)p
is the best possible. This inequality has been discovered

by Hardy while he was trying to introduce a simple proof of the Hilbert inequality.
The weighted form of (1.6) is given by∫ ∞

0

xα
(
F (x)

x

)p
dx <

(
p

p− 1− a

)p ∫ ∞
0

xαfp(x)dx, (1.7)

where α < p− 1 and the constant
(

p
p−1−α

)p
is the best possible (for more details,

see [5]). If 0 ≤ α < p−1 and An =
∑n
k=1 am, where (an)n∈N is a positive sequence,

then the discrete analogue of (1.7) reads

∞∑
n=1

nα
(
An
n

)p
<

(
p

p− α− 1

)p ∞∑
n=1

nαapn, (1.8)
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where
(

p
p−1−α

)p
is also the best possible constant (see [4]). For more details about

the Hardy inequality and its development, we refer the reader to [8] and [9], as well
as to the references cited therein.

In the last decade, an interesting topic in connection with the Hilbert-type in-
equalities is a study of related inequalities where functions and sequences are re-
placed by certain integral or discrete operators, as in the Hardy inequality. For ex-
ample, Adiyasuren e.t al. [2], proved that if 1

p + 1
q = 1, p > 1, λ > 0, α1 ∈

[
− 1
q , 0
)
,

α2 ∈
[
− 1
p , 0
)
, Am =

∑m
k=1 ak, Bn =

∑n
k=1 bk, where (am)m∈N, (bn)n∈N are positive

sequences, then there holds the inequality

∞∑
m=1

∞∑
n=1

ambn
(m+ n)λ

< C

( ∞∑
m=1

mpqα1−1Apm

) 1
p
( ∞∑
n=1

npqα2−1Bqn

) 1
q

, (1.9)

where pα2 + qα1 = −λ and C = pqα1α2B(−pα2,−qα1). Here, B stands for the

usual beta function defined by B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, a, b > 0, and C is the

best possible constant in (1.9). For some related Hilbert-type inequalities including
partial sums and upper limit function, the reader is referred to [1, 6, 7, 12, 13, 15, 16]
and the references cited therein.

We aim here to establish several new Hilbert-type inequalities with partial sums,
closely related to inequality (1.3). In fact, we obtain several inequalities which are
sharper than the Hilbert-type inequality (1.3). The paper’s outline is as follows:
after this Introduction, Section 2 is devoted to discrete Hilbert-type inequalities.
We first derive the Hilbert-type inequality involving the kernel 1/max(mλ, nλ)
and two partial sums. Then, bearing in mind the weighted Hardy inequality, we
establish a weaker form of the latter inequality involving only one partial sum, as
well as the corresponding equivalent form. In addition, we prove that the constant
factors included in the derived inequalities are the best possible. Finally, we show
that these inequalities refine the Hilbert-type inequality (1.3). Finally, in Section
3, we derive integral analogues of the corresponding discrete results.

2. Discrete results

In this section, we establish several discrete Hilbert-type inequalities involving
partial sums instead of the corresponding sequences. It turns out that these new
forms of inequalities are sharper than the Hilbert-type inequality (1.3). In addition,
these inequalities are closely related to the Hardy inequality. Our first result, which
includes two partial sums, reads as follows:

Theorem 2.1. Let 1
p + 1

q = 1, p > 1, 0 < λ ≤ min(p, q), and let (am)m∈N, (bn)n∈N
be positive sequences such that

∑∞
m=1 am < ∞,

∑∞
n=1 bn < ∞. If Am =

∑m
k=1 ak

and Bn =
∑n
k=1 bk, then

∞∑
m=1

∞∑
n=1

ambn
max(mλ, nλ)

< λ

( ∞∑
m=1

m−λ−1Apm

) 1
p
( ∞∑
n=1

n−λ−1Bqn

) 1
q

, (2.1)

provided that
∑∞
m=1m

−λ−1Apm < ∞ and
∑∞
n=1 n

−λ−1Bqn < ∞. In addition, con-
stant λ is the best possible.
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Proof. The starting point in this proof is a suitable transformation of a double
series on the left-hand side of (2.1). More precisely, we have that

∞∑
m=1

∞∑
n=1

ambn
max(mλ, nλ)

=

∞∑
m=1

am

( ∞∑
n=1

bn
max(mλ, nλ)

)

=

∞∑
m=1

am

(
m∑
n=1

bn
max(mλ, nλ)

+

∞∑
n=m+1

bn
max(mλ, nλ)

)

=

∞∑
m=1

am

(
Bm
mλ

+

∞∑
n=m+1

bn
nλ

)
. (2.2)

Further, application of the Abel summation by parts formula to the series
∑∞
n=m+1

bn
nλ

yields

∞∑
n=m+1

bn
nλ

= lim
n→∞

Bn+1

(n+ 1)λ
− Bm
mλ
−
∞∑
n=m

Bn

(
1

(n+ 1)λ
− 1

nλ

)

= −Bm
mλ

+

∞∑
n=m

Bn

(
1

nλ
− 1

(n+ 1)λ

)
.

On the other hand, the function h(x) = 1
xλ

is strictly convex, so utilizing the
well-known relation h(x) > h(y) + h′(y)(x − y) (see, e.g. [14]), we arrive at the
inequality

1

nλ
− 1

(n+ 1)λ
<

λ

nλ+1
,

which yields,
∞∑

n=m+1

bn
nλ

< −Bm
mλ

+ λ

∞∑
n=m

Bn
nλ+1

.

Now, combining the last estimate with (2.2), as well as changing the order of
summation, we obtain

∞∑
m=1

∞∑
n=1

ambn
max(mλ, nλ)

< λ

∞∑
m=1

am

∞∑
n=m

Bn
nλ+1

= λ

∞∑
n=1

n∑
m=1

amBn
nλ+1

= λ

∞∑
n=1

AnBn
nλ+1

.

Finally, applying the Hölder inequality to the right-hand side of the above inequal-
ity, we derive (2.1), as claimed.

Now, it remains to prove that λ is the best possible value. To do this, let us
suppose that there exists a positive constant K < λ such that (2.1) holds when

λ is replaced by K. Furthermore, consider the sequences ãm = m
λ
p−

ε
p−1 and

b̃n = n
λ
q−

ε
q−1, where ε > 0 is sufficiently small number. Then, the corresponding

partial sums can be bounded from the above as follows:

Ãm =

m∑
k=1

ãk =

m∑
k=1

k
λ
p−

ε
p−1 ≤

∫ m

0

x
λ
p−

ε
p−1dx =

m
λ
p−

ε
p

λ
p −

ε
p

,

and similarly,

B̃n =

n∑
k=1

b̃k ≤
n
λ
q−

ε
q

λ
q −

ε
q

.
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By virtue of the above estimates, we can derive the corresponding upper bound for
the right-hand side of (2.1). Namely, we have that

K

( ∞∑
m=1

m−λ−1Ãpm

) 1
p
( ∞∑
n=1

n−λ−1B̃qn

) 1
q

≤ K

( ∞∑
m=1

m−λ−1 mλ−ε

(λp −
ε
p )p

) 1
p
( ∞∑
n=1

n−λ−1 nλ−ε

(λq −
ε
q )q

) 1
q

=
pqK

(λ− ε)2

( ∞∑
m=1

m−1−ε

) 1
p
( ∞∑
n=1

n−1−ε

) 1
q

=
pqK

(λ− ε)2

(
1 +

∞∑
m=2

m−1−ε

)
.

Moreover, since
∑∞
m=2m

−1−ε ≤
∫∞

1
x−1−εdx = 1

ε , we arrive at the following esti-
mate

K

( ∞∑
m=1

m−λ−1Ãpm

) 1
p
( ∞∑
n=1

n−λ−1B̃qn

) 1
q

≤ pqK(1 + ε)

ε(λ− ε)2
. (2.3)

Our next intention is to establish the corresponding estimate for the left-hand side
of (2.1), equipped with the above sequences (ãm)m∈N and (b̃n)n∈N. Obviously, it
follows that
∞∑
m=1

∞∑
n=1

ãmb̃n
max(mλ, nλ)

=

∞∑
m=1

∞∑
n=1

m
λ
p−

ε
p−1n

λ
q−

ε
q−1

max(mλ, nλ)
≥
∫ ∞

1

∫ ∞
1

x
λ
p−

ε
p−1y

λ
q−

ε
q−1

max(xλ, yλ)
dxdy.

Moreover, since∫ ∞
1

∫ ∞
1

x
λ
p−

ε
p−1y

λ
q−

ε
q−1

max(xλ, yλ)
dxdy

=

∫ ∞
1

x−ε−1

(∫ ∞
1
x

u
λ−ε
q −1

max (1, uλ)
du

)
dx

=

∫ ∞
1

x−ε−1

(∫ ∞
0

u
λ−ε
q −1

max (1, uλ)
du−

∫ 1
x

0

u
λ−ε
q −1

max (1, uλ)
du

)
dx

=
1

ε

(∫ 1

0

u
λ−ε
q −1du+

∫ ∞
1

u
λ−ε
q −1

uλ
du

)
−
∫ ∞

1

x−ε−1

(∫ 1
x

0

u
λ−ε
q −1

)
dudx

=
1

ε

(
q

λ− ε
+

1
λ
p −

ε
q

)
− q

λ− ε

∫ ∞
1

x−ε−1−λq + ε
q dx

=
1

ε

(
q

λ− ε
+

1
λ
p −

ε
q

)
−O(1),

we obtain the relation

∞∑
m=1

∞∑
n=1

ãmb̃n
max(mλ, nλ)

≥ 1

ε

(
q

λ− ε
+

1
λ
p −

ε
q

)
−O(1). (2.4)
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Now, combining relations (2.3) and (2.4), we arrive at the inequality

q

λ− ε
+

1
λ
p −

ε
q

− εO(1) ≤ pqK(1 + ε)

(λ− ε)2
.

Finally, letting ε→ 0+, the above inequality reduces to λ ≤ K, which contradicts
with our assumption that K < λ. Consequently, the constant λ is the best possible
value. The proof is now completed. �

We now give a weaker version of inequality (2.1), involving only one partial sum.
In fact, we give two equivalent forms of this inequality. Here, the Hardy inequality
plays a crucial role.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Then
hold the inequalities

∞∑
m=1

∞∑
n=1

ambn
max(mλ, nλ)

< p

( ∞∑
m=1

mp−λ−1apm

) 1
p
( ∞∑
n=1

n−λ−1Bqn

) 1
q

, (2.5)

[ ∞∑
m=1

mλ(q−1)−1

( ∞∑
n=1

bn
max(mλ, nλ)

)q] 1
q

< p

( ∞∑
n=1

n−λ−1Bqn

) 1
q

, (2.6)

and they are equivalent. Moreover, p is the best possible constant factor in both
relations.

Proof. Inequality (2.5) is a consequence of (2.1). Namely, having in mind the
weighted Hardy inequality (1.8), we have that

∞∑
m=1

m−λ−1Apm <
( p
λ

)p ∞∑
m=1

mp−λ−1apm,

so (2.5) holds. The proof that p is the best possible constant follows the lines of
the corresponding part of the proof of Theorem 2.1 and it is omitted here.

Our next step is to show that (2.5) implies inequality (2.6). In order to summarize
our further discussion, let I and J stand for the left-hand sides of (2.5) and (2.6),
respectively. Now, consider the sequence

am = mλ(q−1)−1

( ∞∑
n=1

bn
max(mλ, nλ)

)q−1

, m ≥ 1.

Then, taking into account (2.5), we have that

Jq =

∞∑
m=1

mp−λ−1apm = I < p

( ∞∑
m=1

mp−λ−1apm

) 1
p
( ∞∑
n=1

n−λ−1Bqn

) 1
q

= pJq−1

( ∞∑
n=1

n−λ−1Bqn

) 1
q

,
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so (2.6) holds. On the other hand, assuming that (2.6) is valid, we have that

I =

∞∑
m=1

m
1
q−

λ
p am

(
m−

1
q+λ

p

∞∑
n=1

bm
max(mλ, nλ)

)

≤

( ∞∑
m=1

mp−λ−1apm

) 1
p

· J,

due to the Hölder inequality. In conclusion, inequalities (2.5) and (2.6) are equiva-
lent. Clearly, this equivalence also provides the best possible constant in (2.5). The
proof is now completed. �

Both inequalities (2.1) and (2.5) are more accurate than the Hilbert-type in-
equality (1.3), which we discuss in the sequel.

Remark. Let (am)m∈N and (bn)n∈N be positive sequences such that
∑∞
m=1 am <∞

and
∑∞
n=1 bn < ∞. Clearly, the series

∑∞
m=1

(
Am
m

)2
and

∑∞
n=1

(
Bn
n

)2
converge

due to the weighted Hardy inequality (1.8). Now, let p = q = 2 and λ = 1. Then,
inequalities (2.1) and (2.5) yield the following interpolating series:

∞∑
m=1

∞∑
n=1

ambn
max(m,n)

<

( ∞∑
m=1

m−2A2
m

) 1
2
( ∞∑
n=1

n−2B2
n

) 1
2

< 2

( ∞∑
m=1

a2
m

) 1
2
( ∞∑
n=1

n−2B2
n

) 1
2

< 4

( ∞∑
m=1

a2
m

) 1
2
( ∞∑
n=1

b2n

) 1
2

.

This means that inequalities (2.1) and (2.5) represent refinements of the Hilbert-
type inequality (1.3). More generally, applying (1.8) to the right-hand side of (2.5),
we arrive at the inequality

∞∑
m=1

∞∑
n=1

ambn
max(mλ, nλ)

<
pq

λ

( ∞∑
m=1

mp−λ−1apm

) 1
p
( ∞∑
n=1

nq−λ−1bqn

) 1
q

.

Of course, (2.1) also represents refinement of the above inequality.

3. Integral analogues

We aim here to establish integral versions of the Hilbert-type inequalities from
Section 2. Our first result is an integral analogue of Theorem 2.1.

Theorem 3.1. Let 1
p + 1

q = 1, p > 1, λ > 0, and let the functions f , g be non-

negative integrable on (0,∞). If F (x) =
∫ x

0
f(u)du and G(x) =

∫ x
0
g(u)du, then

holds the inequality∫ ∞
0

∫ ∞
0

f(x)g(y)

max(xλ, yλ)
dxdy

≤ λ

(∫ ∞
0

x−λ−1F p(x)dx

) 1
p
(∫ ∞

0

y−λ−1Gq(y)dy

) 1
q

,

(3.1)
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provided that
∫∞

0
x−λ−1F p(x)dx < ∞ and

∫∞
0
y−λ−1Gq(y)dy < ∞. In addition,

constant λ is the best possible in (3.1).

Proof. Similarly to Theorem 2.1, the starting point in this proof is a suitable trans-
formation of the double integral on the left-hand side of (3.1). More precisely, we
have that ∫ ∞

0

∫ ∞
0

f(x)g(y)

max(xλ, yλ)
dxdy

=

∫ ∞
0

f(x)

[∫ ∞
0

g(y)

max(xλ, yλ)
dy

]
dx

=

∫ ∞
0

f(x)

[∫ x

0

g(y)

max(xλ, yλ)
dy +

∫ ∞
x

g(y)

max(xλ, yλ)
dy

]
dx

=

∫ ∞
0

f(x)

[∫ x

0

g(y)

xλ
dy +

∫ ∞
x

g(y)

yλ
dy

]
dx

=

∫ ∞
0

f(x)

[
G(x)

xλ
+

∫ ∞
x

g(y)

yλ
dy

]
dx.

Furthermore, using the integration by parts, as well as changing the order of inte-
gration, we find that

∫ ∞
0

∫ ∞
0

f(x)g(y)

max(xλ, yλ)
dxdy =

∫ ∞
0

f(x)

[
G(x)

xλ
− G(x)

xλ
+ λ

∫ ∞
x

G(y)

yλ+1
dy

]
dx

= λ

∫ ∞
0

f(x)

[∫ ∞
x

G(y)

yλ+1
dy

]
dx

= λ

∫ ∞
0

G(y)

yλ+1

[∫ y

0

f(x)dx

]
dy

= λ

∫ ∞
0

G(y)F (y)

yλ+1
dy.

(3.2)

Finally, applying the Hölder inequality to the right-hand side of (3.2), we obtain
(3.1), as claimed.

In order to prove that λ is the best possible value in (3.1), suppose that there is
0 < K < λ such that (3.1) holds when λ is replaced by K. Further, let us define
functions

fε(x) =

{
x
λ−ε
p −1, x ≥ 1,

0, 0 < x < 1,
and gε(x) =

{
x
λ−ε
q −1, x ≥ 1,

0, 0 < x < 1,

where 0 < ε < λ. Then, it follows that

Fε(x) =

∫ x

1

t
λ−ε
p −1dt <

p

λ− ε
x
λ−ε
p and Gε(x) =

∫ x

1

t
λ−ε
q −1dt <

q

λ− ε
x
λ−ε
q ,



MORE ACCURATE HILBERT-TYPE INEQUALITIES INVOLVING PARTIAL SUMS 9

for x ≥ 1, while Fε(x) = Gε(x) = 0, for 0 < x < 1. Now, with the above choice of
functions, we obtain the following upper bound:∫ ∞

0

∫ ∞
0

fε(x)gε(y)

max(xλ, yλ)
dxdy ≤ K

(∫ ∞
0

x−λ−1F pε (x)dx

) 1
p
(∫ ∞

0

y−λ−1Gqε(y)dy

) 1
q

< K
pq

(λ− ε)2

(∫ ∞
1

x−ε−1dx

) 1
p
(∫ ∞

1

y−ε−1dy

) 1
q

= K
pq

ε (λ− ε)2 .

On the other hand, we have that∫ ∞
0

∫ ∞
0

fε(x)gε(y)

max(xλ, yλ)
dxdy =

∫ ∞
1

∫ ∞
1

x
λ−ε
p −1y

λ−ε
q −1

max(xλ, yλ)
dxdy

=
1

ε

(
q

λ− ε
+

1
λ
p −

ε
q

)
−O(1).

Clearly, when ε → 0+ the above two estimates imply that λ ≤ K, which is a
contradiction. This proves our assertion. �

Remark. It should be noticed here that if f ≡ g and λ = 1, then (3.2) reduces to
the identity ∫ ∞

0

∫ ∞
0

f(x)f(y)

max(x, y)
dxdy =

∫ ∞
0

(
F (x)

x

)2

dx.

Taking into account this identity, relation (1.5) implies the Hardy inequality (1.6)
for p = 2. More precisely, we have that∫ ∞

0

(
F (x)

x

)2

dx =

∫ ∞
0

∫ ∞
0

f(x)f(y)

max(x, y)
dxdy < 4

∫ ∞
0

f2(x)dx.

In order to complete our discussion, we also give an integral analogue of Theorem
2.2.

Theorem 3.2. Assume that the conditions as in Theorem 3.1 are satisfied. Then
hold the inequalities∫ ∞

0

∫ ∞
0

f(x)g(y)

max(xλ, yλ)
dxdy < p

(∫ ∞
0

xp−λ−1fp(x)dx

) 1
p
(∫ ∞

0

y−λ−1Gq(y)dy

) 1
q

,

[∫ ∞
0

xλ(q−1)−1

(∫ ∞
0

g(y)

max(xλ, yλ)
dy

)q
dx

] 1
q

< p

(∫ ∞
0

y−λ−1Gq(y)dy

) 1
q

,

and they are equivalent. Moreover, p is the best possible constant factor in both
relations.

Proof. The proof follows the lines of the proof of Theorem 2.2, therefore it is omit-
ted. �
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