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APPLICATIONS OF FRACTIONAL CALCULUS FOR SECOND

ORDER DIFFERENTIAL EQUATIONS

RESAT YILMAZER

Abstract. Fractional calculus is a very useful and simple means in obtaining

particular solutions to certain nonhomogeneous linear differential equations.
Our aim in this work is to obtain fractional solutions of the second order

nonhomogeneous differential equation with Nishimoto’s operator.

1. Introduction

The topic of fractional calculus, which has been widely studied, has gained con-
siderable and popularity over the last three decades, due to its practices in many
different areas of science and engineering ([6],[7],[9],[11]). Chemical analysis of flu-
ids, heat transfer, diffusion, the Schrödinger equation, and material science are
some areas where fractional calculus is used.

The fractional calculus operators and their generalizations ([1]-[3],[5],[8],[12]-[16])
have been used to solve some types of differential equations and fractional differen-
tial equations.

Riemann-Liouville fractional integration and fractional differentiation,

aD
−α
t f (t) =

1

Γ (α)

∫ t

a

f (τ) (t− τ)
α−1

dτ (t > a, α > 0),

and

aD
α
t f (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

a

f (τ) (t− τ)
n−α−1

dτ (n− 1 ≤ α < n),

where n ∈ N , N is the set of positive integers, Γ is Euler’s gamma function.
Definition 1.1. (cf. ([8],[10])) Let D = {D−, D+} , C = {C−, C+} , C− be a
curve along the cut joining two points z and −∞ + i Im (z) , C+ be a curve along
the cut joining two points z and ∞+ i Im (z) , D− be a domain surrounded by C−,
D+ be a domain surrounded by C+ (here D contains the points over the curve C
).
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Submitted June 25, 2019. Published September 25, 2019.
Communicated by Mikail Et.

47



48 R. YILMAZER

Moreover, let f (z) be a regular function in D (z ∈ D) ,

fη = (f)η =
Γ (η + 1)

2πi

∫
C

f (t)

(t− z)η+1 dt (η 6= −1,−2, ...) , (1.1)

f−n = lim
η→−n

fη
(
n ∈ Z+, η ∈ R

)
, (1.2)

where t 6= z, z ∈ C,
−π ≤ arg (t− z) ≤ π for C−,

0 ≤ arg (t− z) ≤ 2π for C+,

then fη (η > 0) is said to be the fractional derivative of f (z) of order η and fη
(η < 0) is said to be the fractional integral of f (z) of order −η, provided (in each
case) that

|fη| <∞ (η ∈ R) . (1.3)

Finally, let the fractional calculus operator Nη be defined by (cf. [8])

Nη =

(
Γ (η + 1)

2πi

∫
C

dt

(t− z)η+1

)
(η 6= −1,−2, ...)

with
N−n = lim

η→−n
Nη

(
n ∈ Z+, η ∈ R

)
.

We find it to be worthwhile to recall here the following useful lemmas and prop-
erties associated with the fractional differintegration which is defined above (cf.e.g.
([4],[8])).
Lemma 1.2. (Linearity). Let f (z) and g (z) be analytic and single-valued func-
tions. If fη and gη exist, then

(k1f + k2g)η = k1fη + k2gη (1.4)

where k1 and k2 are constants and η ∈ R; z ∈ C.
Lemma 1.3. (Index law). Let f (z) be an analytic and single-valued function. If
(fξ)η and (fη)ξ exist, then

(fξ)η = fξ+η = (fη)ξ (1.5)

where ξ, η ∈ R; z ∈ C and
∣∣∣ Γ(ξ+η+1)

Γ(ξ+1)Γ(η+1)

∣∣∣ <∞.
Lemma 1.4. (Generalized Leibniz rule). Let f (z) and g (z) be analytic and single-
valued functions. If fη and gη exist, then

(fg)η =

∞∑
n=0

Γ (η + 1)

Γ (η − n+ 1) Γ (n+ 1)
fη−ngn (1.6)

where η ∈ R; z ∈ C and
∣∣∣ Γ(η+1)

Γ(η−n+1)Γ(n+1)

∣∣∣ <∞.
Property 1.5. For a constant λ,(

eλz
)
η

= ληeλz (λ 6= 0; η ∈ R; z ∈ C) , (1.7)

(
e−λz

)
η

= e−iπηληe−λz (λ 6= 0; η ∈ R; z ∈ C) , (1.8)

(
zλ
)
η

= e−iπη
Γ (η − λ)

Γ (−λ)
zλ−η

(
η ∈ R; z ∈ C;

∣∣∣∣Γ (η − λ)

Γ (−λ)

∣∣∣∣ <∞) . (1.9)
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2. Main results

With the help of above lemmas, we have the following main results of this paper.
Theorem 2.1. Let ψ ∈ {ψ : 0 6= |ψγ | <∞} and φ ∈ {φ : 0 6= |φγ | <∞} . Then

the nonhomogeneous second order differential equation

(r − α) (r − β)ψ2 + (κ+ µr)ψ1 + `ψ = φ (r 6= {α, β}) (2.1)

has particular solutions of the forms;

ψ =

({
φγ [(r − α) (r − β)]

γ−1
(r − α)

µα+κ
α−β (r − β)

−µβ+κα−β
}
−1

× [(r − α) (r − β)]
−γ

(r − α)
−µα+κ

α−β (r − β)
µβ+κ
α−β

)
−(1+γ)

(2.2)

and

ψ =

{[
φγ (r − α)

(2γ+µ−2)
e−

κ+µα
r−α

]
−1

(r − α)
−(2γ+µ)

e
κ+µα
r−α

}
−(1+γ)

(2.3)

where ψn = dnψ/drn (n = 0, 1, 2) , ψ0 = ψ = ψ (r) , φ = φ (r) is a given function,

α, β, κ, µ and ` constants, γ =
(1−µ)±

√
(µ−1)2−4`

2 with (µ− 1)
2 ≥ 4`.

Proof . i) In the case of α 6= β;
Applying the operator Nγ to both members of (2.1) , we then obtain

[ψ2 (r − α) (r − β)]γ + [ψ1 (κ+ µr)]γ + (ψ`)γ = φγ . (2.4)

Using (1.4)− (1.6) we have

[ψ2 (r − α) (r − β)]γ = ψ2+γ (r − α) (r − β)

+ γ [2r − (α+ β)]ψ1+γ + γ (γ − 1)ψγ (2.5)

and

[ψ1 (κ+ µr)]γ = ψ1+γ (κ+ µr) + γµψγ . (2.6)

Making of the relations (2.5) and (2.6) , rewriting (2.4) in the following form;

ψ2+γ (r − α) (r − β) + ψ1+γ {γ [2r − (α+ β)] + κ+ µr}
+ψγ [γ (γ − 1) + γµ+ `] = φγ . (2.7)

Choosing γ such that

γ =
(1− µ)±

√
(µ− 1)

2 − 4`

2
, (µ− 1)

2 ≥ 4` (2.8)

then we obtain

ψ2+γ (r − α) (r − β) + ψ1+γ [(2γ + µ) r + κ− γ (α+ β)] = φγ (2.9)

from (2.7) .
Next, writing

ψ1+γ = u = u (r) ,
(
ψ = u−(1+γ)

)
(2.10)

we obtain

u1 + u

[
(2γ + µ) r + κ− γ (α+ β)

(r − α) (r − β)

]
= φγ

1

(r − α) (r − β)
(2.11)
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from (2.9) . A particular solution to this linear first order differential equation is
given by

u =
{
φγ [(r − α) (r − β)]

γ−1
(r − α)

µα+κ
α−β (r − β)

−µβ+κα−β
}
−1

× [(r − α) (r − β)]
−γ

(r − α)
−µα+κ

α−β (r − β)
µβ+κ
α−β . (2.12)

Thus we obtain the solution (2.2) from (2.10) , (2.12) .
ii) In the case of α = β;
In this case we have

(r − α)
2
ψ2 + (κ+ µr)ψ1 + `ψ = φ (r 6= α) (2.13)

from (2.1) .
Operate Nγ to the both sides of equation (2.13) , we have then[

ψ2 (r − α)
2
]
γ

+ [ψ1 (κ+ µr)]γ + (ψ`)γ = φγ . (2.14)

Using (1.4)− (1.6) we have[
ψ2 (r − α)

2
]
γ

= ψ2+γ (r − α)
2

+ 2γ (r − α)ψ1+γ + γ (γ − 1)ψγ . (2.15)

Making use of the relations (2.6) , (2.15) we may write (2.14) in the following
form

ψ2+γ (r − α)
2

+ ψ1+γ [2γ (r − α) + κ+ µr] + ψγ [γ (γ − 1) + γµ+ `] = φγ . (2.16)

Choose γ such that

γ =
(1− µ)±

√
(µ− 1)

2 − 4`

2
, (µ− 1)

2 ≥ 4`

we have then

ψ2+γ (r − α)
2

+ ψ1+γ [(2γ + µ) r + κ− 2γα] = φγ (2.17)

from (2.16) .
Therefore setting

ψ1+γ = w = w (r) ,
(
ψ = w−(1+γ)

)
(2.18)

we have

w1 + w

[
(2γ + µ) r + κ− 2γα

(r − α)
2

]
= φγ

1

(r − α)
2 . (2.19)

A particular solution to this linear first order differential equation is given by

w =
[
φγ (r − α)

(2γ+µ−2)
e−

κ+µα
r−α

]
−1

(r − α)
−(2γ+µ)

e
κ+µα
r−α . (2.20)

Thus we obtain the solution (2.3) from (2.18) and (2.20) .
Theorem 2.2. Let ψ ∈ {ψ : 0 6= |ψγ | <∞; γ ∈ R} . Then the homogeneous

second order linear ordinary differential equation

(r − α) (r − β)ψ2 + (κ+ µr)ψ1 + `ψ = 0, (r 6= {α, β}) (2.21)

has solutions of the forms;

ψ = k
{

[(r − α) (r − β)]
−γ

(r − α)
−µα+κ

α−β (r − β)
µβ+κ
α−β

}
−(1+γ)

(2.22)
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and

ψ = k
{

(r − α)
−(2γ+µ)

e
κ+µα
r−α

}
−(1+γ)

(2.23)

where ψn = dnψ/drn (n = 0, 1, 2) , ψ0 = ψ = ψ (r) is a given function, α, β, κ, µ

and ` constants, γ =
(1−µ)±

√
(µ−1)2−4`

2 with (µ− 1)
2 ≥ 4`.

Proof. When φ = 0 in Theorem 2.1

u1 + u

[
(2γ + µ) r + κ− γ (α+ β)

(r − α) (r − β)

]
= 0 (2.24)

and

w1 + w

[
(2γ + µ) r + κ− 2γα

(r − α)
2

]
= 0 (2.25)

for α 6= β and α = β, instead of (2.11) and (2.19) , respectively.
Therefore, we obtain (2.22) for (2.24) and (2.23) for (2.25) .
Theorem 2.3. Let φ ∈ {φ : 0 6= |φγ | <∞; γ ∈ R} . Then the fractional differ-

integrated functions

ψ =

({
φγ [(r − α) (r − β)]

γ−1
(r − α)

µα+κ
α−β (r − β)

−µβ+κα−β
}
−1

× [(r − α) (r − β)]
−γ

(r − α)
−µα+κ

α−β (r − β)
µβ+κ
α−β

)
−(1+γ)

+ k
{

[(r − α) (r − β)]
−γ

(r − α)
−µα+κ

α−β (r − β)
µβ+κ
α−β

}
−(1+γ)

(2.26)

satisfies (2.1) for α 6= β. And

ψ =

{[
φγ (r − α)

(2γ+µ−2)
e−

κ+µα
r−α

]
−1

(r − α)
−(2γ+µ)

e
κ+µα
r−α

}
−(1+γ)

+ k
{

(r − α)
−(2γ+µ)

e
κ+µα
r−α

}
−(1+γ)

(2.27)

satisfies (2.13) for α = β.
Proof. It is clear by Theorems 2.1 and 2.2.

3. Conclusion

In this paper, we apply the fractional calculus operator method for homogeneous
and nonhomogeneous second order differential equations. The most important ad-
vantage of the method is that it can be applied for singular equations.
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