SOME NEW CLASSES OF GENERALIZED LAGRANGE-BASED APOSTOL TYPE HERMITE POLYNOMIALS

WASEEM AHMAD KHAN, MOHEB SAAD ABOUZAID, ABDALLAH HASSAN ABUSUFIAN, KOTTAKKARAN SOOPPY NISAR*

Abstract. In this paper, we present a general family of Lagrange-based Apostol-type Hermite polynomials thereby unifying the Lagrange-based Apostol Hermite-Bernoulli and the Lagrange-based Apostol Hermite-Genocchi polynomials. We further define Lagrange-based Apostol Hermite-Euler polynomials via the generating function. In terms of these generalizations, we find new and useful relations between the unified family and the Apostol Hermite-Euler polynomials. We also derive their explicit representations and list some basic properties of each of them. Some implicit summation formulae and general symmetry identities are obtained by using different analytical means and applying generating functions.

1. Introduction

The Lagrange polynomials in several variables, which are known as the Chan-Chyan-Srivastava polynomials [4] are defined by means of the following generating function:

\[\prod_{j=1}^{r}(1-x_j t)^{-\alpha_j} = \sum_{n=0}^{\infty} g_n^{(\alpha_1,\ldots,\alpha_r)}(x_1,\ldots,x_r)t^n \]

\[(\alpha_j \in \mathbb{C}(j = 1,\ldots,r); |t| < \min\{|x_1|^{-1},\ldots,|x_r|^{-1}\}) \]

and are given explicitly by

\[g_n^{(\alpha_1,\alpha_2,\ldots,\alpha_r)}(x_1,x_2,\ldots,x_r) = \sum_{k_1+k_2+\cdots+k_r=n} (\alpha_1)_{k_1}(\alpha_2)_{k_2}(\cdots)(\alpha_r)_{k_r} \frac{x_1^{k_1}}{k_1!} \cdots \frac{x_r^{k_r}}{k_r!}, \]

where and in what follows \((\lambda)_n\) denotes the Pochhammer symbol (or the shifted factorial) defined by

\[(\lambda)_0 := 1 \text{ and } (\lambda)_n = \lambda(\lambda+1)\ldots(\lambda+n-1) (n \in \mathbb{N} := \{1,2,3,\ldots\}). \]

2010 Mathematics Subject Classification. 11B68, 11B65, 33C45.

Key words and phrases. Hermite polynomials; Chan-Chyan-Srivastava polynomials; Lagrange-based Apostol type Hermite polynomials; summation formulae; symmetric identities.

©2019 Ilirias Research Institute, Prishtinë, Kosovë.

Communicated by Serkan Araci.

*Corresponding author.
The details of the generalized Apostol-Bernoulli polynomials $B_n^{(\alpha)}(x)$ of order α, the generalized Apostol-Euler polynomials $E_n^{(\alpha)}(x)$ of order α and the generalized Apostol-Genocchi polynomials $G_n^{(\alpha)}(x)$ of order α found in [2,6,8–14].

The polynomials $B_n^{(\alpha)}(x;\lambda)$ of order $\alpha \in \mathbb{C}$, $E_n^{(\alpha)}(x;\lambda)$ of order $\alpha \in \mathbb{C}$, $G_n^{(\alpha)}(x;\lambda)$ of order $\alpha \in \mathbb{C}$ are defined respectively by the following generating functions:

$$\left(\frac{t}{\lambda e^t - 1}\right)^{\alpha} e^{xt} = \sum_{n=0}^{\infty} B_n^{(\alpha)}(x;\lambda) \frac{t^n}{n!}, \quad (|t|<|\ln \lambda|<2\pi; 1^{\alpha} = 1) \quad (1.3)$$

$$\left(\frac{2t}{\lambda e^t + 1}\right)^{\alpha} e^{xt} = \sum_{n=0}^{\infty} E_n^{(\alpha)}(x;\lambda) \frac{t^n}{n!}, \quad (|t|<|\ln(-\lambda)|<\pi; 1^{\alpha} = 1) \quad (1.4)$$

and

$$\left(\frac{2t}{\lambda e^t + 1}\right)^{\alpha} e^{xt} = \sum_{n=0}^{\infty} G_n^{(\alpha)}(x;\lambda) \frac{t^n}{n!}, \quad (|t|<|\ln(-\lambda)|<\pi; 1^{\alpha} = 1) \quad (1.5)$$

It is easy to see that

$$B_n^{(\alpha)}(x) = B_n^{(\alpha)}(x;1), \ E_n^{(\alpha)}(x) = E_n^{(\alpha)}(x;1) \text{ and } G_n^{(\alpha)}(x) = G_n^{(\alpha)}(x;1).$$

Recently, Srivastava et al. [18] introduce and investigate the following class of Lagrange-based Apostol type polynomials $T_{n,\lambda,k}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ as follows:

Definition 1.1. The Lagrange-based Apostol type polynomials $T_{n,\lambda,k}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ are defined by means of the following generating function:

$$\prod_{j=1}^{r}(1-x_j t)^{-a_j} \left(\frac{2^k t}{\lambda e^t + (-1)^k t}\right)^{\alpha} e^{xt} = \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x) t^n, \quad (1.6)$$

$$\quad (\lambda \in \mathbb{C}; a_j \in \mathbb{C}(j = 1,\cdot\cdot\cdot,r)).$$

In the particular cases when $k = 0$ and $k = 1$, we define the Lagrange-based Apostol-Bernoulli polynomials $B_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ and the Lagrange-based Apostol-Genocchi polynomials $G_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ as follows.

Definition 1.2. The Lagrange-based Apostol-Bernoulli polynomials $B_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ are defined by means of the following generating function

$$\prod_{j=1}^{r}(1-x_j t)^{-a_j} \left(\frac{t}{\lambda e^t - 1}\right)^{\alpha} e^{xt} = \sum_{n=0}^{\infty} B_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x) t^n, \quad (1.7)$$

$$\quad (\lambda \in \mathbb{C}; a_j \in \mathbb{C}(j = 1,\cdot\cdot\cdot,r)).$$

Definition 1.3. The Lagrange-based Apostol-Genocchi polynomials $G_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$ are defined by

$$G_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x) = T_{n,\lambda}^{(a_1,\cdot\cdot\cdot,a_r;\alpha)}(x_1\cdot\cdot\cdot x_r;x)$$
are defined by means of the following generating function
\[\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2t}{\lambda e^t + 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)} (x_1 \cdots x_r; x) t^n, \tag{1.8} \]
\[\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C} (j = 1, \cdots, r). \]

Furthermore, we define the Lagrange-based Apostol-Euler polynomials as follows.

Definition 1.4. The Lagrange-based Apostol-Euler polynomials \(E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)} (x_1 \cdots x_r; x) \) are defined by means of the following generating function:
\[\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2t}{\lambda e^t + 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)} (x_1 \cdots x_r; x) t^n, \tag{1.9} \]
\[\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C} (j = 1, \cdots, r). \]

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) \(H_n(x, y) \) are defined as
\[e^{xt + yt^2} = \sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!}, \tag{1.10} \]
are solutions of the heat equation
\[\frac{\partial}{\partial y} H_n(x, y) = \frac{\partial^2}{\partial x^2} H_n(x, y), \tag{1.11} \]
\[H_n(x, 0) = x^n. \]

The higher order Hermite polynomials, sometimes called the Kampé de Fériet polynomials of order \(m \) or the Gould Hopper polynomials (GHP) \(H_n^{(m)}(x, y) \) are a solution of the generalized heat equation
\[e^{xt + yt^m} = \sum_{n=0}^{\infty} H_n^{(m)}(x, y) \frac{t^n}{n!}, \tag{1.12} \]
\[\frac{\partial}{\partial y} f(x, y) = \frac{\partial^m}{\partial x^m} f(x, y) \tag{1.13} \]
\[f(x, 0) = x^n. \tag{1.14} \]

Also we note that
\[H_n^{(2)}(x, y) = H_n(x, y), \tag{1.15} \]
\[H_n(2x, -1) = H_n(x), \tag{1.16} \]
where \(H_n(x) \) are the classical Hermite polynomials.

The Lagrange-based generalizations which we have introduced above, enable us to obtain new and useful relations between the Apostol-Bernoulli polynomials, Apostol-Euler polynomials and the Apostol-Genocchi polynomials. In this paper, we first study several elementary properties of the generalized Lagrange-based Apostol type Hermite polynomials \(T_{n,\lambda, k}^{(\alpha_1, \cdots, \alpha_r; \alpha)} (x_1 \cdots x_r; x, y) \). Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions.
2. Definitions and Basic Properties of the Generalized Lagrange-Based Apostol-Type Polynomials \(T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \)

In this section, we give Lagrange-based Apostol type Hermite polynomials and give the explicit representations and list basic properties of the generalized Lagrange-based Apostol-type Hermite polynomials \(T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \).

Definition 2.1. The Lagrange-based Apostol type Hermite polynomials \(T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) are defined by means of the following generating function:

\[
\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2^k t}{\lambda e^t + (-1)^{k+1}} \right)^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n,
\]

\((\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C}(j = 1, \cdots, r)). \)

In the particular cases, when \(k = 0 \) and \(k = 1 \), we define the Lagrange-based Apostol type Hermite-Bernoulli polynomials \(H B_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) and the Lagrange-based Apostol type Hermite-Genocchi polynomials \(H G_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) as follows.

Definition 2.2. The Lagrange-based Apostol type Hermite-Bernoulli polynomials \(H B_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) are defined by means of the following generating function:

\[
\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{t}{\lambda e^t - 1} \right)^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} H B_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n,
\]

\((\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C}(j = 1, \cdots, r)). \)

Definition 2.3. The Lagrange-based Apostol type Hermite-Genocchi polynomials \(H G_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) are defined by means of the following generating function:

\[
\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2t}{\lambda e^t + 1} \right)^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} H G_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n,
\]

\((\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C}(j = 1, \cdots, r)). \)

Furthermore, we define the Lagrange-based Apostol type Hermite-Euler polynomials as follows.

Definition 2.4. The Lagrange-based Apostol type Hermite-Euler polynomials \(H E_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) \) are defined by means of the following generating function:

\[
\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2}{\lambda e^t + 1} \right)^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} H E_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n,
\]

\((\lambda \in \mathbb{C}; \alpha_j \in \mathbb{C}(j = 1, \cdots, r)). \)

Theorem 2.1. Each of the following relationships holds true:

\[
H B_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(0, \cdots, 0; x, y) = \frac{H B_{n}^{(\alpha)}(x, y; \lambda)}{n!}.
\]

(2.5)
It is fairly straightforward to observe from (1.1) and (2.2) that the Hermite Genocchi polynomials are explicitly given by

$$H E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(0, \cdots, 0; x, y) = \frac{H E_n^{(\alpha)}}{n!}(x, y; \lambda).$$

(2.6)

$$H G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(0, \cdots, 0; x, y) = \frac{H G_n^{(\alpha)}}{n!}(x, y; \lambda).$$

(2.7)

$$H B_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, 0) = \sum_{l=0}^{n} \frac{B_{n-l}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.8)

$$H E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, 0) = \sum_{l=0}^{n} \frac{E_{n-l}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.9)

$$H G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, 0) = \sum_{l=0}^{n} \frac{G_{n-l}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.10)

$$H B_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 1)}(0, \cdots, 0; 0, 0) = B_n(\lambda).$$

(2.11)

$$H E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 1)}(0, \cdots, 0; 0, 0) = E_n(\lambda).$$

(2.12)

$$H G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 1)}(0, \cdots, 0; 0, 0) = G_n(\lambda).$$

(2.13)

$$H B_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 0)}(x_1, \cdots, x_r; 0, 0) = H E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 0)}(x_1, \cdots, x_r; 0, 0).$$

(2.14)

and

$$H G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; 0)}(x_1, \cdots, x_r; 0, 0) = g_n^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r).$$

(2.15)

Theorem 2.2. The Lagrange-based Apostol Hermite Bernoulli polynomials, the Lagrange-based Apostol Hermite Euler polynomials and the Lagrange-based Apostol Hermite Genocchi polynomials are explicitly given by

$$H B_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, y) = \sum_{l=0}^{n} \frac{H E_{n-l}^{(\alpha)}(x, y; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.16)

$$H E_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, y) = \sum_{l=0}^{n} \frac{H E_{n-l}^{(\alpha)}(x, y; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.17)

and

$$H G_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, y) = \sum_{l=0}^{n} \frac{H G_{n-l}^{(\alpha)}(x, y; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!}.$$

(2.18)

respectively.

Proof. It is fairly straightforward to observe from (1.1) and (2.2)

$$H B_{n,\lambda}^{(\alpha_1, \cdots, \alpha_r; \alpha)}(x_1, \cdots, x_r; x, y) = \left[\left(\frac{t}{\lambda e^t - 1} \right)^\alpha e^{xt+yt^2} \right] \left(\prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \right)$$

$$= \left(\sum_{n=0}^{\infty} H B_n^{(\alpha)}(x, y; \lambda) \frac{t^n}{n!} \right) \left(\sum_{l=0}^{\infty} g_l^{(\alpha_1, \cdots, \alpha_r)} t^l \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \frac{H B_{n-l}^{(\alpha)}(x, y; \lambda) g_l^{(\alpha_1, \cdots, \alpha_r)}(x_1, \cdots, x_r)}{(n-l)!} \right) t^n.$$
Comparing the coefficient of \(t^n \) in both sides, we get the result (2.16). The explicit representations of \(H_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x,y) \) and \(H_{n,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x,y) \) follow in a similar manner from the generating function (1.1) in conjunction with (2.3) and (2.4) respectively.

Theorem 2.3. The following identities hold true for the Lagrange-based Apostol type Hermite-Bernoulli polynomials, the Lagrange-based Apostol type Hermite-Euler polynomials and the Lagrange-based Apostol type Hermite-Genocchi polynomials

\[
T_{n,\lambda,k}^{(\alpha_1+\beta_1,\cdots,\alpha_r+\beta_r;\alpha+\beta)}(x_1,\cdots,x_r;x+z,y+u) = \sum_{l=0}^{n} T_{l,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x) T_{n-l,\lambda,k}^{(\beta_1,\cdots,\beta_r;\beta)}(x_1,\cdots,x_r;z,u).
\]

(2.19)

\[
H_{n,\lambda}^{(\alpha_1+\beta_1,\cdots,\alpha_r+\beta_r;\alpha+\beta)}(x_1,\cdots,x_r;x+z,y+u) = \sum_{l=0}^{n} H_{l,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x) H_{n-l,\lambda}^{(\beta_1,\cdots,\beta_r;\beta)}(x_1,\cdots,x_r;z,u).
\]

(2.20)

\[
H_{n,\lambda}^{(\alpha_1+\beta_1,\cdots,\alpha_r+\beta_r;\alpha+\beta)}(x_1,\cdots,x_r;x+z,y+u) = \sum_{l=0}^{n} H_{l,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x) H_{n-l,\lambda}^{(\beta_1,\cdots,\beta_r;\beta)}(x_1,\cdots,x_r;z,u).
\]

(2.21)

and

\[
H_{n,\lambda}^{(\alpha_1+\beta_1,\cdots,\alpha_r+\beta_r;\alpha+\beta)}(x_1,\cdots,x_r;x+z,y+u) = \sum_{l=0}^{n} H_{l,\lambda}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x) H_{n-l,\lambda}^{(\beta_1,\cdots,\beta_r;\beta)}(x_1,\cdots,x_r;z,u).
\]

(2.22)

3. Summation formulae for generalized Lagrange-based Apostol-type Hermite polynomials

First, we derive the following result involving generalized Lagrange-based Apostol-type Hermite polynomials by using series rearrangement techniques. We now begin with the following theorem.

Theorem 3.1. The following implicit summation formulae for Lagrange-based Apostol type Hermite polynomials \(T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x,y) \) holds true:

\[
T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x,y) = \sum_{m=0}^{n} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x-z)t^m H_{n-m}(z,y) \frac{1}{(n-m)!}.
\]

(3.1)

Proof. By the exploiting generating function (2.1) and using the (1.10)

\[
\prod_{j=1}^{r}(1-x_j t)^{-\alpha_j} \left(\frac{2k t}{\lambda e^t + (-1)^k + 1} \right)^\alpha e^{(x-z) t} e^{z t^2 + y^2}
\]

\[
= \sum_{m=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1,\cdots,x_r;x-z)t^m \sum_{n=0}^{\infty} H_{n}(z,y) \frac{t^n}{n!}.
\]
Now replacing n by $n - m$ and comparing the coefficients of t^n, we get the result (3.1).

Theorem 3.2. The following implicit summation formulae for Lagrange-based Apostol type Hermite polynomials $T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)$ holds true:

$$T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x + u, y + w) = \sum_{m=0}^{n} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x - z) t^m \frac{H_{n-m}(u, w)}{(n - m)!}. \quad (3.2)$$

Proof. Applying the definition (2.1), we have

$$\prod_{j=1}^{r}(1 - x_j t)^{-\alpha_j} \left(\frac{2^k t}{\lambda e^t + (-1)^{k+1}} \right)^\alpha e^{(x+u)t + (y+w)t^2}$$

$$= \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x + u, y + w) t^n$$

$$= \sum_{m=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) t^m \sum_{n=0}^{\infty} \frac{H_{n}(u, w)}{n!} t^n.$$

Replacing n by $n - m$ in the r.h.s and comparing the coefficient of t^n, we get the result (3.2).

Theorem 3.3. The following implicit summation formulae for Lagrange-based Apostol type Hermite polynomials $T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)$ holds true:

$$T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) = \sum_{m=0}^{n} \sum_{j=0}^{\lfloor m/2 \rfloor} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)} x^{n-m-2j} y^j \frac{1}{(n - m - 2j)!}. \quad (3.3)$$

Proof. Using the definition (2.1), we have

$$\sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y) t^n = \prod_{j=1}^{r}(1 - x_j t)^{-\alpha_j} \left(\frac{2^k t}{\lambda e^t + (-1)^{k+1}} \right)^\alpha e^{xt+y^2}$$

$$= \sum_{m=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)} t^m \sum_{n=0}^{\infty} x^n t^n \frac{1}{n!} \sum_{j=0}^{\infty} y^j \frac{t^{2j}}{j!}$$

$$= \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r;\alpha)} x^{n-m} t^n \frac{1}{(n-m)!} \sum_{j=0}^{\infty} y^j \frac{t^{2j}}{j!}.$$
Theorem 3.4. The following implicit summation formulae for Lagrange-based Apostol type Hermite polynomials $T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)$ holds true:

$$T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x+1, y) = \sum_{m=0}^{n} T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^m \frac{1}{(n-m)!}.$$ (3.4)

Proof. By the definition of generalized Lagrange-based Apostol type polynomials, we have

$$\sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x+1, y)t^n - \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n = \prod_{j=1}^{r} (1 - x_j t)^{-\alpha_j} \left(\frac{2^k t}{\lambda e^t + (-1)^{k+1}} \right)^{\alpha} e^{xt+y^2} (e^t - 1)$$

$$= \sum_{m=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^m \sum_{n=0}^{\infty} \frac{t^n}{n!} - \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n.$$

Replacing n by $n-m$, we have

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^m \frac{t^n}{(n-m)!} - \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)t^n.$$

Equating their coefficients of t^n leads to formula (3.4).

4. General symmetry identities

In this section, we establish general symmetry identities for the generalized Lagrange-based Apostol type Hermite polynomials $T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x, y)$ and generalized Lagrange-based Apostol type polynomials $T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; x)$ by applying the generating functions (2.1) and (1.6). Such type of works, introduced here by the approach given in the recent works of Khan [7] and Pathan and Khan [15, 17].

Theorem 4.1. Let $a, b > 0$ and $a \neq b$. Then for $x, y \in \mathbb{R}$ and $n \geq 0$, the following identity holds true:

$$\sum_{m=0}^{n} a^{n-m} b^m T_{n-m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; bx, b^2 y)T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; ax, a^2 y)$$

$$= \sum_{m=0}^{n} b^{n-m} a^m T_{n-m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; ax, a^2 y)T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; bx, b^2 y).$$ (4.1)

Proof. Start with

$$G(t) = \prod_{j=1}^{r} (1 - x_j abt)^{-\alpha_j} \left(\frac{2^{k abt}}{\lambda e^{at} + (-1)^{k+1}} \right)^{\alpha} e^{abtx+y^2} (e^{at} - 1).$$

Then the expression for $G(t)$ is symmetric in a and b and we can expand $G(t)$ into series in two ways to obtain:

$$G(t) = \sum_{n=0}^{\infty} T_{n,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; bx, b^2 y)(at)^n \sum_{m=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\ldots,\alpha_r;\alpha)}(x_1 \cdots x_r; ax, a^2 y)(bt)^m$$
\[G(t) = \sum_{n=0}^{\infty} b^n m^\alpha T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) \sum_{n=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; bx, b^2 y) (bt)^n. \] (4.3)

On the similar lines we can show that
\[G(t) = \sum_{n=0}^{\infty} b^n m^\alpha T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) \sum_{n=0}^{\infty} T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; bx, b^2 y) (bt)^n. \] (4.4)

By comparing the coefficients of \(t^n \) on the right hand sides of the last two equations, we arrive the desired result.

Remark 4.1. For \(\alpha = 1 \), the above result reduces to
\[\sum_{m=0}^{n} a^{n-m} b^m T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; bx, b^2 y) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) \]
\[= \sum_{m=0}^{n} b^{n-m} a^m T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; bx, b^2 y). \] (4.5)

Remark 4.2. By setting \(b = 1 \) in Theorem 4.1, we immediately get the following result
\[\sum_{m=0}^{n} a^{n-m} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; x, y) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) \]
\[= \sum_{m=0}^{n} a^m T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; ax, a^2 y) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(x_1 \cdots x_r; x, y). \] (4.6)

Theorem 4.2. Let \(a, b, c > 0 \) and \(a \neq b \). Then for \(x, y \in \mathbb{R} \) and \(n \geq 0 \), the following identity holds true:
\[\sum_{m=0}^{n} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} a^{n-m} b^m T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(bx + \frac{b}{a} i + j, b^2 z) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(ay) \]
\[= \sum_{m=0}^{n} \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} (-\lambda)^{i+j} a^m b^{n-m} T_{n,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(ax + \frac{a}{b} i + j, a^2 z) T_{m,\lambda,k}^{(\alpha_1,\cdots,\alpha_r,\alpha)}(by). \] (4.7)

Proof. Let
\[H(t) = \prod_{j=1}^{r} \left(1 - x_j at \right)^{-\alpha_j} \left(\frac{2^{2k} at^2}{(\lambda e^{at} + (-1)^{k+1})(\lambda e^{bt} + (-1)^{k+1})} \right)^{\alpha_j} \times \frac{1 + \lambda(-1)^{a+j+1} e^{at}}{(\lambda e^{at} + 1)(\lambda e^{bt} + 1)} e^{ab(x+y)t + a^2 b^2 z^2 t^2}. \]
\[g(t) = \prod_{j=1}^{r} (1 - x_j at)^{-\alpha_j} \left(\frac{2^k at}{(\lambda e^{at} + (-1)^{k+1})} \right)^{\alpha} e^{abxt + a^2 b^2 z^2 t^2} \left(\frac{1 - \lambda(e^{-bt})^a}{\lambda e^{bt} + 1} \right). \]
\[
\prod_{j=1}^{r}(1-x_jbt)^{-\alpha_j} \left(\frac{2^kbt}{(\lambda e^{at} + (-1)^k+1)} \right)^\alpha e^{abxt} \left(\frac{1 - \lambda(e^{-at})^b}{\lambda e^{at} + 1} \right)
\]

= \prod_{j=1}^{r}(1-x_jat)^{-\alpha_j} \left(\frac{2^kat}{(\lambda e^{at} + (-1)^k+1)} \right)^\alpha e^{abxt+a^2bt^2} \sum_{i=0}^{a-1}(-\lambda)^i e^{bit}

= \prod_{j=1}^{r}(1-x_jat)^{-\alpha_j} \left(\frac{2^kat}{(\lambda e^{at} + (-1)^k+1)} \right)^\alpha e^{abyt} \sum_{i=0}^{b-1}(-\lambda)^j e^{atj}

= \prod_{j=1}^{r}(1-x_jat)^{-\alpha_j} \left(\frac{2^kat}{(\lambda e^{at} + (-1)^k+1)} \right)^\alpha e^{abyt} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1}(-\lambda)^i j e^{(bx+\frac{b}{a}i+j)at}

\times \sum_{m=0}^{\infty} T_{m,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha)(ay)(bt)^m.

= \sum_{n=0}^{\infty} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^i j T_{n,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha) \left(bx + \frac{b}{a} i + j, b^2 z \right) (at)^n \sum_{m=0}^{\infty} T_{m,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha)(ay)(bt)^m

= \sum_{n=0}^{\infty} \sum_{m=0}^{a-1} \sum_{i=0}^{b-1} (-\lambda)^i j a^n b^m T_{n,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha) \left(bx + \frac{b}{a} i + j, b^2 z \right) T_{m,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha)(ay)t^n.

(4.8)

Since \((-1)^{a+1} = (-1)^{b+1}\), the expression for

\[
H(t) = \prod_{j=1}^{r}(1-x_jabt)^{-\alpha_j} \left(\frac{2^kat^2}{(\lambda e^{at} + (-1)^k+1)(\lambda e^{bt} + (-1)^k+1)} \right)^\alpha \\
\times \frac{1 + \lambda(-1)^{a+1} e^{bt}(x+y)t + a^2b^2t^2}{(\lambda e^{at} + 1)(\lambda e^{bt} + 1)}
\]

is symmetric in \(a\) and \(b\). Therefore, by symmetry we obtain the following power series expansion for \(H(t)\)

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{a-1} \sum_{i=0}^{b-1} (-\lambda)^i j a^n b^m T_{n,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha) \left(ax + \frac{a}{b} i + j, a^2 z \right) T_{m,\lambda,k}(\alpha_1,\ldots,\alpha_r,\alpha)(by)t^n.
\]

(4.9)

By comparing the coefficients of \(t^n\) on the right hand sides of the last two equations, we arrive at the desired result.

Declaration:

The preprint version available in ‘https://www.preprints.org/manuscript/201807.0352/v1’

References

WASEEM AHMAD KHAN
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, INTEGRAL UNIVERSITY, LUCKNOW-226026, INDIA
E-mail address: waseem08_khan@rediffmail.com

MOHED SAAD ABOUZAI
DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCE-WADI AL Dawaser, PRINCE SATTAM BIN ABDULAZIZ UNIVERSITY, RIYADH REGION 11991, SAUDI ARABIA.
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KAFRELSHIEKH UNIVERSITY, EGYPT
E-mail address: mohed.abouzaid@hotmail.com

ABDALLAH HASSAN ABUSUFIAN
DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCE-WADI AL Dawaser, PRINCE SATTAM BIN ABDULAZIZ UNIVERSITY, RIYADH REGION 11991, SAUDI ARABIA
E-mail address: sufianmath97@hotmail.com

KOTTKAKKARAN SOOPPY NISAR
DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCE-WADI AL Dawaser, PRINCE SATTAM BIN ABDULAZIZ UNIVERSITY, RIYADH REGION 11991, SAUDI ARABIA
E-mail address: n.sooppy@psau.edu.sa, ksnisar1@gmail.com