FUNCTIONAL INEQUALITIES FOR INCOMPLETE BETA AND GAMMA FUNCTIONS

WAAD T. SULAIMAN

Abstract. In the present paper several new functional inequalities are proved.

1. Introduction

The Gamma and Beta functions are respectively defined by
\[\Gamma(a) = \int_0^\infty t^{a-1}e^{-t} \, dt, \quad a > 0, \quad (1.1) \]
\[B(a, b) = \int_0^1 t^{a-1}(1-t)^{b-1} \, dt = \int_0^\infty \frac{t^{a-1}}{(1+t)^{a+b}} \, dt, \quad a, b > 0. \quad (1.2) \]

For \(0 \leq x \leq \infty\), the incomplete Gamma and Beta functions are respectively defined by
\[\Gamma(a, x) = \int_x^\infty t^{a-1}e^{-t} \, dt, \quad a > 0, \quad (1.3) \]
\[B(a, b, x) = \int_x^\infty \frac{t^{a-1}}{(1+t)^{a+b}} \, dt, \quad a, b > 0. \quad (1.4) \]

In [1], Ismail and Laforgia proved the following results

Theorem 1.1. For a fixed \(a > 0\), the function
\[f(x) := \frac{\Gamma(a, x)}{\Gamma(a)} \quad (1.5) \]
satisfies the inequality
\[f(x) f(y) \geq f(x + y), \quad x, y \geq 0, \quad (1.6) \]
when \(a \geq 1\). If \(a \leq 1\), the inequality (1.6) is reversed.
Theorem 1.2. Let
\[h(x) := \int_{x}^{\infty} u(t) e^{-t} dt, \quad f(x) := h(x)/h(0). \] (1.7)
If \(u(x+y)/u(x) \) is non-increasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then \(f \) satisfies (1.6). If \(u(x+y)/u(x) \) is non-decreasing in \(x \) for every \(y > 0 \), then (1.6) is reversed.

In fact Theorem 1.2 is a generalization of Theorem 1.1.

The aim of this paper is to present three general theorems concerning inequalities of the type
\[f(x)f(y) \geq f(x+y), \quad f(x)f(y) \geq f(xy), \quad f(xy) \geq f(x+y-1), \]
and hence as a consequence to obtain some new results by applying these theorems to some special functions.

2. Results

Theorem 2.1. Let \(g(x) \geq 0, \ 1 \leq x \leq \infty. \) Define
\[f(x) = \int_{x}^{\infty} g(t) dt, \quad F(x) = f(x)/f(1). \] (2.1)
If \(g(xy)/g(x) \) is non-increasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then the following inequality holds
\[F(x)F(y) \geq F(xy). \] (2.2)
If \(g(xy)/g(x) \) is non-decreasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then (2.2) is reversed.

Proof. Set
\[G(x) = F(x)F(y) - F(xy). \]
On keeping \(y \) fixed, we have
\[G'(x) = F'(x)F(y) - yF'(xy) \]
\[= \frac{g(x)f(y)}{f(1)} \left(\frac{y}{F(y)} \frac{g(xy)}{g(x)} - 1 \right). \]
Set
\[H(x) = \frac{y}{F(y)} \frac{g(xy)}{g(x)} - 1. \]
Since
\[G(1) = F(1)F(y) - F(y) = 0, \quad \lim_{x \to \infty} G(x) = 0, \] (2.3)
then by Roll’s theorem there exists a point \(p \in (0, \infty) \) such that \(G'(p) = 0 \). Now, \(H(x) \) is decreasing in \(x \) on \((0, p)\) with \(H(p) = 0 \), then \(H(x) > 0 \) on \((0, p)\). Therefore on \((0, p)\), \(G'(x) > 0 \), being a positive multiple of \(H(x) \). This fact with (2.3) shows that \(G(x) \) is increasing on \((0, p)\) vanishing at \(p \) and decreasing on \((p, \infty)\). Therefore \(G(x) \geq 0 \).

The following is a simple generalization of Theorem 1.2.
Theorem 2.2. Let \(g(x) \geq 0, 0 \leq x \leq \infty \). Define
\[
\begin{align*}
 f(x) &= \int_x^\infty g(t) \, dt, \\
 F(x) &= f(x) / f(0).
\end{align*}
\]
(2.4)

If \(g(x+y)/g(x) \) is non-increasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then the following inequality holds
\[
 F(x) F(y) \geq F(x+y).
\]
(2.5)

If \(g(x+y)/g(x) \) is non-decreasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then (2.5) is reverses.

Proof. Set
\[
 G(x) = F(x)F(y) - F(x+y).
\]

On keeping \(y \) fixed, we have
\[
 G'(x) = F'(x)F(y) - F'(x+y)
\]
\[
= g(x)F(y)
\]
\[
= \frac{F(y)}{f(0)} \left(\frac{1}{g(x)} g(x+y) - 1 \right).
\]

Set
\[
 H(x) = \frac{1}{F(y)} \frac{g(x+y)}{g(x)} - 1.
\]

Since
\[
 G(0) = F(0)F(y) - F(y) = 0, \quad \lim_{x \to \infty} G(x) = 0,
\]
(2.6)

then by Roll’s theorem there exists a point \(p \in (0, \infty) \) such that \(G'(p) = 0 \). Now, \(H(x) \) is decreasing in \(x \) on \((0, p)\) with \(H(p) = 0 \), then \(H(x) > 0 \) on \((0, p)\). Therefore on \((0, p)\), \(G'(x) > 0 \), being a positive multiple of \(H(x) \). This fact with (2.6) shows that \(G(x) \) is increasing on \((0, p)\) vanishing at \(p \) and decreasing on \((p, \infty)\). Therefore \(G(x) \geq 0 \).

Theorem 2.3. Let \(g(x) \geq 0, 1 \leq x \leq \infty \). Define
\[
\begin{align*}
 f(x) &= \int_x^\infty g(t) \, dt, \\
 F(x) &= f(x) / f(1).
\end{align*}
\]
(2.7)

If \(g(x+y-1)/g(x) \) is non-increasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then the following inequality holds
\[
 F(xy) \geq F(x+y-1).
\]
(2.8)

If \(g(x+y-1)/g(x) \) is non-decreasing in \(x \) on \((0, \infty)\) for every \(y > 0 \), then (2.8) is reverses.

Proof. Set
\[
 G(x) = F(xy) - F(x+y-1).
\]
On keeping \(y \) fixed, we have
\[
G'(x) = y F'(xy) - y F'(x + y - 1)
\]
\[
= y \frac{g(xy)}{f(1)} \left(\frac{g(x + y - 1)}{y g(xy)} - 1 \right).
\]
Set
\[
H(x) = \frac{g(x + y - 1)}{y g(xy)} - 1.
\]
Since
\[
G(1) = F(y) - F(y) = 0, \quad \lim_{x \to \infty} G(x) = 0, \quad (2.9)
\]
then by Roll’s theorem there exists a point \(p \in (0, \infty) \) such that
\[
G'(p) = 0.
\]
Now,
\[
H(x) \text{ is decreasing in } x \text{ on } (0, p) \text{ with } H(p) = 0,
\]
then
\[
H(x) > 0 \text{ on } (0, p).
\]
Therefore
\[
G'(x) > 0 \text{ on } (0, p), \text{ being a positive multiple of } H(x).
\]
This fact with \((2.9)\) shows that \(G(x) \) is increasing on \((0, p)\) vanishing at \(p \) and decreasing on \((p, \infty)\). Therefore \(G(x) \geq 0 \).

3. Applications

Remark. Theorem 1.1 follows from Theorem 2.2 by putting
\[
g(t) = t^{a-1} e^{-t}, \quad a > 0.
\]

Theorem 3.1. Let \(a, b > 0, a < 1 \). Then the function \(F(x) = B(a, b, x)/B(a, b) \) satisfy the inequality
\[
F(x)F(y) \leq F(x + y), \quad x, y > 0.
\]
Proof. The proof follows from Theorem 2.2 by putting
\[
f(x) = \int_{x}^{\infty} \frac{t^{a-1} e^{-t}}{(1 + t)^{a+b}} dt.
\]
In fact,
\[
\frac{g(x + y)}{g(x)} = \left(1 + \frac{y}{x} \right)^{a-1} \left(1 + \frac{y}{1 + x} \right)^{-a-b},
\]
is non-decreasing, being the product of two non-decreasing functions. \(\Box \)

Theorem 3.2. Let \(a > 0, x \geq 0, y > 1 \). Then the function \(F(x) = \Gamma(a, x)/\Gamma(a) \) satisfy the inequality \((2.2)\). If \(y \in (0, 1) \), then \((2.2)\) reverses.

Proof. The proof follows from theorem 2.1, by putting
\[
f(x) = \int_{x}^{\infty} t^{a-1} e^{-t} dt.
\]
We have
\[
\frac{g(xy)}{g(x)} = y^{a-1} e^{-x(y-1)},
\]
which is non-decreasing for \(y > 1 \), and non-increasing for \(0 < y < 1 \). \(\Box \)
Theorem 3.3. Let $x \geq 0, a, b > 0, y > 1$. Then the function $F(x) = B(a, b, x) / B(a, b)$ satisfy the inequality \ref{inequality}. If $y \in (0, 1)$, then \ref{inequality} reverses.

Proof. The proof follows from theorem 2.1, by putting

$$f(x) = \int_x^\infty \frac{t^{a-1}}{(1+t)^{a+b}} dt, \quad x \geq 0.$$

In fact

$$\frac{f'(xy)}{f'(x)} = y^{a-1} \left(\frac{1+x}{1+xy} \right)^{a+b},$$

which is non-increasing in x as

$$\left(\frac{1+x}{1+xy} \right)' = \frac{1-y}{(1+xy)^2} \leq 0, \quad \text{for } y > 1.$$

\[\blacksquare\]

Theorem 3.4. Let $x \geq 0, a > 0$. Then the function $F(x) = \Gamma(a, x) / \Gamma(a)$ satisfy the inequality \ref{inequality} provided $a, y \in (1, \infty)$ or $a, y \in (0, 1)$. If $a \in (0, 1), y \in (1, \infty)$ or $a \in (1, \infty), y \in (0, 1)$ then \ref{inequality} reverses.

Proof. The proof follows from theorem 2.3, by putting

$$F(x) = \int_x^\infty t^{a-1} e^{-t} dt, \quad x \geq 0.$$

We have

$$\frac{g(x+y-1)}{g(x)} = e^{1-y} \left(1 + \frac{y-1}{x} \right)^{-a},$$

which implies that $\frac{g(x+y-1)}{g(x)}$ is non-increasing whenever

$$a, y \in (1, \infty) \text{ or } a, y \in (0, 1)$$

and it is non-decreasing whenever

$$a \in (0, 1), y \in (1, \infty) \text{ or } a \in (1, \infty), y \in (0, 1).$$

\[\blacksquare\]

Theorem 3.5. Let $b > 0, x \geq 0$. Then the function $F(x) = B(a, b, x) / B(a, b)$ satisfy the inequality \ref{inequality}. If $0 < y < 1, a > 1$. If $y > 1, 0 < a < 1$, the inequality \ref{inequality} reverses.

Proof. The proof follows from theorem 2.3 by putting

$$f(x) = \int_x^\infty \frac{t^{a-1}}{(1+t)^{a+b}} dt, \quad x \geq 0.$$

We have

$$\frac{g(x+y-1)}{g(xy)} = y^{1-a} \left(1 + \frac{y-1}{x} \right)^{-a} \left(\frac{1+xy}{x+y} \right)^{a+b},$$

$$\left(\frac{1+xy}{x+y} \right)' = \frac{y^2-1}{(x+y)^2}.$$
which shows that $\frac{g(x + y - 1)}{g(xy)}$ is non-increasing for $0 < y < 1$, $a > 1$ and it is non-decreasing for $y > 1$, $a < 1$.

Acknowledgments. The authors would like to thank the anonymous referee for his comments that helped us improve this article.

REFERENCES

Waad T. Sulaiman, Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.
E-mail address: waadsulaiman@hotmail.com