ILIRIAS JOURNAL OF MATHEMATICS

ISSN: 2334-6574, URL: WWW.ILIRIAS.COM/1JM
VOLUME 10 IsSUE 1(2023), PAGES 1-13.
HTTPS://DOL.ORG/10.54379/11M-2023-1-1

ON GENERALIZED STATISTICAL CONVERGENCE IN
¢-METRIC SPACES

MEHMET GURDAL, SAIME KOLANCI, OMER KISI

ABSTRACT. This manuscript focuses on the investigation of A-statistical con-
vergence, A-statistically Cauchy sequences in g-metric spaces, and the relation-
ship between these concepts. We investigate almost A-statistical convergence
by using the notion of (V,\)-summability to generalize the concept of sta-
tistical convergence in g-metric space. Moreover, we expand the definition
of A-statistical convergence to encompass invariant statistical convergence as
well as invariant A-statistical convergence in g-metric spaces. We delve into
the examination of their intriguing and fundamental properties.

1. INTRODUCTION

For numerous decades, the study of summability theory and sequence conver-
gence has been one of the most significant and active areas of academic effort in pure
mathematics. Its substantial works may also be used in topology, functional analy-
sis, Fourier analysis, measure theory, applied mathematics, mathematical modeling,
computer science, and other fields. In recent years, many mathematicians have used
the concept of statistical convergence of sequences, which was first introduced by
Fast [8] as an extension of the usual concept of sequential limits, as a tool to solve
many open problems in the area of sequence spaces and summability theory, as
well as in some other applications. One may refer to [0, [10]. Mursaleen [15], on the
other hand, introduced the concept of A-statistical convergence as a novel approach
and explored its connections to statistical convergence, strongly Cesro summabil-
ity, and strongly (V, A)-summability. In recent years, Braha [3|, [4], Esi et al. [7],
Hazarika et al. [I1], Kii and Nuray [I3], Sava [I7], and Sava and Nuray [I8] have
generalized the notions of asymptotically equivalent, A-statistical convergence, al-
most A-statistical convergence, and invariant statistical convergence. For further
background on sequence spaces and related topics, readers are encouraged to refer
to the monographs [2] and [16].

Various methods exist for extending the notion of a distance function (refer to
[12] for details). One noteworthy approach is the concept of a G-metric space,
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introduced by Mustafa and Sims [I4], which presents a fresh and distinctive gener-
alization of the ordinary metric. In this framework, metrics represent the distance
between three locations. Choi et al. proposed a concept called g-metric, which
extends the idea of a distance function, in [5]. The g-metric with degree n is a
distance function involving n + 1 points, and it provides a generalization of both
the ordinary distance between two points and the G-metric between three points.
Abazari recently introduced the notion of statistical g-convergence in [I], extending
the concept of a metric.

The primary objective of this research is to introduce the concepts of A-statistically
convergent sequences and A-statistically g-Cauchy sequences, and explore their
properties in g-metric spaces. Additionally, we extend the definition of A-statistical
convergence to invariant statistical convergence and invariant A-statistical conver-

gence, and examine their relationship with g {VA] and gS‘ . Furthermore, we will

present natural inclusion theorems in addition to these definitions.

2. PRELIMINARIES

In this section, we will review specific definitions and results that form the basis
of the current study. We will begin by presenting several definitions.

The main concept underlying statistical convergence is the notion of natural
density. The natural density of a set A C N is denoted and defined as follows:

6(A) =lim: [{k € A: k <n}|,
where the vertical bars denote the cardinality of the set enclosed.

A real-valued sequence x = (z) is said to be statistically convergent to the real
number z if for every ¢ > 0,

d{keN:|z—x| >e})=0.
We shall also use S to denote the set of all statistically convergent sequences.
The concept of A-statistical convergence of sequences © = (z}) of real numbers
has been studied by Mursaleen [I5]. Let A = (\,) be a non-decreasing sequence of

positive real numbers that tends to infinity, satisfying A,4+1 < A +1 and Ay = 1.
The generalized de la Valle-Poussin mean is defined as

1
tn (z) = = Z Tk
" kel,

where I, = [n— A\, + 1,n] forn=1,2,....
If A, = n, then (V, A)-summability reduces to (C, 1)-summability. We denote

[C,1] = {a: = (x,): 3L € R, 1i7IL1r1n_1 id(mk,x) = O}

k=1
and
[V, = {x = (z,): IL € R, lim ;! Z d(zg,x) = O}
" KEln

for the sets of sequences x = (xy) that are strongly Cesro summable and strongly
(V, A)-summable to a number z, respectively.
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A sequence of real numbers x = (xy) is said to be A-statistically convergent to
the number z if for every ¢ > 0,

1
limA— {kel,:d(zg,x) >e}|=0.

In this case, we denote the A-statistical limit of (zx) as Sy-limzy = x or zp —

Remark. If A\, =n, then S\ is equivalent to S.

Throughout the paper, let (Y, g) denote a g-metric space, and let (z,) be a
sequence in Y.

Definition 2.1 ([14]). LetY be a nonempty set, and a function G : Y XY xY — R*
that satisfies the following five properties is called a generalized metric or, briefly,
a G-metric on' Y. The pair (Y, G) is referred to as a G-metric space.

i) G(u,v,2) =0 ifu=v=u,

1) 0 < G (u,u,v); for each u,v € G, with u # v,

iii) G (u,u,v) < G (u,v,z), for each u,v,x €Y with x # v,

w) G (u,v,x) =G (u,z,v) = G (v,z,u) = --- (symmetry in all three variables),

v) G (u,v,2) <G (u,a,0)+G (a,v,x), for eachu,v,x,a €Y (rectangle inequality).

Subsequently, Choi et al. [5] introduced g-metric functions of degree n.

Definition 2.2. Let Y be a nonempty set. A function g : YTt — RY that satisfies
the following features is called a g-metric with order j on Y. The pair (Y,g) is
referred to as a g-metric space.
gi) g (0,1, .., x;) =0 iff xo =21 = ... =z,
gi) g (zo,1,...,25) =g (xp(o),xp(l), ...,xp(j)), for permutation p on {0,1,...,5},
giii) g(xo,x1,....25) < g(qo,q1,....q5), for each (zo,z1,...,x5), (qo,q1,--,q5) €
Y+l with

{z;:1=0,1,..,5} C{g;: i =0,1,..., 5},

giv) For all xg,z1,...,Ts,q0,q1, -, @, 0 € Y with s+t + 1= j,

g (x07x17 <5 Ls,40,q15 -+ Qt) < g ($0,$1, cy gy, U, U, "'7”) +9g (QO7qla - qt, U, U, "'7U) .
It is obvious that when j = 1, we have an ordinary metric space, and when j = 2,
we have a G-metric space.

The following theorem will be required in the main findings.

Theorem 2.3. Let Y be a nonempty set, and let g be a metric with order j on 'Y .
In this context, the following properties are provided:
1) g(x’ ) '1:, q7 tt Q) S g(x’ ) x’ u? te u) Jr g(“? tt u’ q7 te q)’
—— S—— ——

s times s times s times

2) g (:L.7 q? "‘7q) S g(x7u7 "'7u) +g (u7 q? "'7q)7

3)g(x, .z u,.u) < sg(x,u,..,u) and g(z, ..., x, Uy o.c,u) < (F+1—38) g (u,x, ...
—— ——
s times s times
n
4) g (330,1171, ,I']) S Z g(xiauv ,U) )
=0

5) |g (Q>x1,m23 ""7xj) ) (U,IL’l, T2, axj)| S max {g (Q>u7 ,’U,) , g (ua qyeeny q)}7

),
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6) |g(x, ...,z u,y.yu) — gz, ..,z u, u)| < |s—5|g(z,u,..,u),
——

N——
s times s’ times
7) g (x,u, ,U) S (1 + (S - 1)) (j + 1- S) g(x, e T, U, 7u)
——

s times

Definition 2.4 ([1]). Let (z,) be a sequence in a g-metric space (Y, g).
i) The sequence (x,,) is said to be statistically convergent to x, provided that for
) Th ) id to be statisticall i1 .ded that
all e > 0,
N LT ‘
nhﬁn;(} i {{21,12, wnij<n:g (x,xil,:rig, ...,xij) > 5}| =0,

and is denoted by gS-lim,_ . ©, = x.
(#i) The sequence (x,,) is called statistically g-Cauchy, provided that for alle > 0,
there exists i. € N such that

LT )
nlLII;O % Hzl,zQ, N ($i5,$11,$i27~~~7$i_j) > 5}| = 0.

3. MAIN RESULTS

Based on the aforementioned definitions and results, we aim to introduce novel
concepts of \-statistically convergent sequences in the context of metrics on g-metric
spaces in this section. Furthermore, we will provide natural inclusion theorems in
addition to these definitions.

Now, we are prepared to define A-statistical convergence in the g-metric space

(X, g).

Definition 3.1. A sequence © = (z,) in a g-metric space (X,g) is said to be
A-statistically convergent to x if for every e > 0,

5;\ (A (n)) = nlggo ()\]n)j |{i1,i2,...,ij € In g (xil,xh, ...,inj,$) > EIH = 0,

or
j!
nh_)rrgo W |{i1,i27...7ij el,:g (xil,xiz, ...7;102-].,95) < 5}{ =1.

In that case, we denote gSy-limz, = z or x, — x (¢S)). When \, = n for all
n, the notion of ¢Sy -statistical convergence for sequences reduces to the concept of
g-statistical convergence as defined in [I, Definition 2.4(i)].

Theorem 3.2. Every convergent sequence in a g-metric space is also A-statistically
convergent.

Proof. According to the definition provided in [5, Definition 4.1}, let us assume that
the sequence (z,,) g-converges to x. For any € > 0, there exists N € N such that

il,i27...77;j >N —= g (x,xil,xiz,...,xij) < e.
Let us consider

A(n) = {il,ig, ...,ij e€el,:g (Z‘il,miz,...,l‘ij,l‘) < 6} .

We can observe that
@iz (),
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and
1l 1l _
lim —L - |A (n)] > lim S ,</\" ,)\N):l.
Therefore, we conclude that gSy-lim x,, = = as desired. [l

The following theorem establishes the uniqueness of the statistical limit in a
g-metric space.

Theorem 3.3. If (z,) is a sequence in a g-metric space (X,g) such that gSy-
limz, =z and gS)-limz, =y, then z = y.

Proof. For any arbitrary € > 0, we define the sets:

A(n) = {’L'l,ig, ...,ij S In g ($>$i17$i2a ...,J]ij) > 25},
J
B(n) := {ihiz, wnij €l g (y7$i17$i2, ...,xij) > 28}
J
Since gSy-lim z,, = z and gSy-lim z,, = y, we have 51 (A(n)) = 0and 51 (B(n)) =0.
Let C(n) := A(n) U B(n). Then 6} (C(n)) = 0, which implies 6} (C¢(n)) = 1.
Suppose i1, 2, ...,1; € C°(n). By Theorem we have
g (:Cay7y7 7y) S g (z7xi17xi17 "'axh) + g (xiuy’ya 7y)
< g (xvxilvxip "'7x7i1) +.7 (g (yvmipxila e le))
< g ($7$’i17mi27 "'7xij) +j (g (y7mi17xi27 7x7,]))
< ] (g (xaxiuxiza "'amij) +g (y7xi1axi27 ...,l’ij))
<jil=+=)=¢
T\2 7 2) T
Since € > 0 is arbitrary, we have
g (x7y7 y7 "'7y) = 07
which implies x = y. ([

Definition 3.4. A sequence x = (x,) in a g-metric space (X,g) is said to be
A-statistically g-Cauchy if for each € > 0, there exists ig € I,, such that

lim

n—so (X, ) [{ir,i2, .05 € In 0 g (@ig, @iy, Tiys oy, ) } = €| = 0.
n

If A\, = n for all n, the notion of A-statistically g-Cauchy sequence is equivalent
to the concept of statistical g-Cauchy sequence as defined in [I] (Definition 2.4(ii)).

Theorem 3.5. Let (X, g) be g-metric space. If the sequence (x,,) is A-statistically
convergent, then (x,) is A-statistically g-Cauchy.

Proof. Let (z,) be a A-statistically convergent sequence in g-metric space (X, g)
and € > 0, then
1

N P c
! j 212y ey U € I s Tigy Tigy ey Ty, ) < == p| = L.
Jim o7 Hu i9y ety € Iyt g (T, @iy, @iy ooy T4 e +1)H
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By the monotonicity condition of the g-metric and Theorem [2.3] we can conclude
that

g (xio,xilaxi27 ...,l'ij) < g (xik,xvx7 ,1’)

M- IM-

S jg(‘r,xikamika'--vmik)
k=0
< .7 (j + l)g (.’E’J}il,l'iz, '“75(:7,']-)
g
<JjU+l)—F—x=c¢
G +1)

From the above inequality, we have

. . €
i1,92,..,5; €I i g (I’,IL'Z'“IZ',Z, ...,xij) < m
- {il,ig, ...,ij el,:g (l‘io,l‘il,l‘iz, ...,Jﬁij) < E}.
Thus
! o .
nl_}rr;om ’{21,22,...,1j el,:g (xio,xil,xiz,...,a:ij) < 5}‘ =1

is obtained and it is demonstrated that (z,) is a A-statistically g-Cauchy sequence
in (X,9). O

Let A be the set of all non-decreasing sequences A = (A,) of positive numbers
that tend to infinity and satisfy A,+1 < A, +1 with A; = 1. Additionally, we denote

! =
glC, 1] =< = (x;): Iz € R, hﬁnﬁ Z g(a:il,xh,...,xij,x)zo

i1,02,00yi5=1

and
j!
glVN ={ o= (z;): Jr €R, lim F N g (@i, iy z) =0
(An) i1yi2,ei €D,
for the sets of sequences @ = (z;) which are strongly g-Cesaro summable and

strongly g (V, A)-summable to a number z, i.e. z, — = (¢[C,1]) and z,, = z (g [V, \])
respectively.
Proofs of the following result are straightforward and omitted.

Theorem 3.6. Let (x,,) be a sequence in g-metric space (X,g). Then
i) If , — 2 (g [C,1]), then x,, = x (gS) -
it) If (X, g) is bounded and x, — x (gS)), then xz, — z (g[C,1]).

Theorem 3.7. Let (X, g) be a g-metric space. Then, following statements hold:
(i) If x,, = x(g[V,\]) then x, — x(gS)), and the inclusion g[V,\] C gS) is
proper.
(it) If © € o and x, — x(gS)), then x, — x (g[V, A]).
(1) gSx Nl = g [V, N] N L.
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Proof. (i) Let x,, — (g [V, A]) . Then, for £ > 0, we have

Z g (milaxiza "')‘Tij?x) > Z g (xi13x’i27 "'71'2'_771.)

i1502,- 505 €ln 01,82, €1

Q(Iz‘l,lz‘Qw-,fL’ij,z)Zs
>¢ |{i1,i2,...,ij S In :g (il'il,xi2, ...,.’Eij7$) > 5}‘ .

Hence, we have x,, — = (gS)) .

It is easy to see that the inclusion g [V, A] C ¢S is proper.

(ii) To prove part (ii), we assume that © = (z,) is in ¢s and x, — z(gS)).
Then, we can assume that

g ($i1,$i2, ”-axij7m) S M fOI‘ 3.11 ]
Given ¢ > 0, we obtain

i1
)\j / Z g(xil’xiz’m,mij,(t)

J
(An) i1,i2,0 i  E1n

_ 7
- j g(xipxiza“'axijvx)

()\n) 11,82,...,0; €1,

9(90111 (Lig e 790)26

4!
N Y Z 9 (xi1a$i2w~»$ij7x)
(An) 01,82,...,95E€In

9(@iy @iy @) <e
]' 01 .1 1 . 9 £
< M()\n)J ‘{115227...71]' S In :g (1172‘1,231‘2, '--axiij) > 5}‘ + 5
As a result, we can conclude that x,, — x (¢ [V, A]). Moreover, we can express this
as

n—>An

! Z" .S
E g (ximxiza "'axijwm) = E g (xilaxi27"'7xij7x)
11,12,..,5;=1 01502500005 =1
il
J:
+ E E g($i17mi27"'7xijax)

11,82,..,4;€1n

jl n—>XA,
S ()\ )j Z g (xi17xi2, ""xij)l‘)
n) .

g ($i1,$i27 ...7$ij,.73)

11,12,..,8€1n

25!
< ; Z g(xinxiz?""xij’x)'
(An) i1,02,...,8 €L,

Since z,, — x (g [V, A]), the desired =, — x (¢ [C, 1]) is attained.
(iii) This follows directly from (i) and (ii). O

It is evident that z, — x (gSx) C z,, — x (g5) for all A, since ()‘T;‘j)j is bounded
by 1. Therefore, we establish the following relation.
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Theorem 3.8. ¢S C ¢S, iff liminf Qn)’ .

nd

Proof. For a given € > 0, we observe that
{il,i27...7ij el,:g (xil,xiz, ...,Qiij,.’L‘) > E}
C {il,ig, wntj<nig (wil,mh,...,xij,x) > 5}.

This yields

j!
# |{i1,i2,...,ij <n:g (:Ei“l'iw ...,xij,x) > 5}|

>

nJ ()\n)J

j!
Lj |{i1,i2, ...,ij el,: g (xil,xiz,...,wij,x) > €}|

|{i1,i2, iy €1, 0 g (a:il,xiQ,...,xij,z) > €}|

Taking the limits as n — oo and employing the fact that lim inf()‘#f > 0, we

obtain

z; > x(gS) = x; = x(9Sn).

Conversely, suppose that lim inf()%)j = 0. Asin [[9], p. 510], we can choose a

subsequence (n (p)),, such that Qa()’ %. Let X = R and g be the following

n(p)’
metric: g : R® — R, g(x,y,2) = max{|z —y|,|v — 2|, |y — 2|} . We define a

sequence = = (x,) by

- 1 ifil,ig,...,ijEIn(p),
" 0 otherwise.

It is clear that z € g [C, 1], and therefore, by [[6], Theorem 2.1], x € gS. However,
on the other hand, = ¢ ¢g[V,A] and Theorem 3.7(ii) implies that x ¢ ¢gSy. Hence,

lim inf (%)J > 0 is a necessary condition. O

Let o be a mapping from the positive integers to themselves. A continuous linear
functional ¢ on ¢, is said to be an invariant mean or a o-mean if it satisfies the
following conditions:

(i) ¢ () > 0, when the sequence = = (z,,) has z,, > 0 for all n,

(ii) ¢ (e) = 1, where e = (1,1,1,...) and

(ili) ¢ (To(n)) = @ (xy) for all z € lo, where {y denotes the set of bounded
sequences.

The mapping o is assumed to be one-to-one and satisfies 0™ (n) # n for all
n,m € Z*, where 0™ (n) denotes the mth iterate of the mapping o at n. Thus, the
functional ¢ extends the limit functional on ¢, the space of convergent sequences,
in the sense that ¢(z,) = lim ,, for all « € ¢. In the case where o is the translation
mapping o(n) = n+1, the o-mean is often referred to as a Banach limit. The space
V,, which consists of bounded sequences whose invariant means are equal, can be
shown to satisfy the following property:

1 : :
V, = {x €l : W%gnoo - ;xak(n) = L, uniformly in m} .
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In [19], Schaefer proved that a bounded sequence x = (zj) of real numbers is
o-convergent to L if and only if the following condition holds

k
1

uniformly in m.
A sequence x = (z) is said to be strongly o-convergent to L if there exists a
number L such that

k
!
lim ; d (Tyi(my, L) =0,

as k — oo, uniformly in m. We denote the set of all strongly o-convergent sequences
as [Vy].

A sequence © = (x,) € lo is said to be almost convergent if all of its Banach
limits coincide. The spaces of almost convergent sequences and strongly almost
convergent sequences are defined respectively by

c= {:13 € loo : limtyy, (x) exists uniformly in n}
and
[ = {x € loo : limtyy,y, (Jx — le]) exists uniformly in n for some I € (C}

where t,, () = I7‘+$"+71rl‘:i'+””“+m

obtain [V,] = [¢].

and e = (1,1,...). Taking o (m) = m+ 1, we

Definition 3.9. A sequence x = (x,) in a g-metric space (X,g) is said to be
Sy -convergent to x if for every e > 0,

1l

lim L

n—oo NnJ

{7:177;27 71] <n: g (xail (m)?xaiz (m)>» vy Ly ("L)7I> > 6}’ = Oa
uniformly in m. In this case, we write g:S'\U-lim Tpn =T 0T Xy, = T (ggg) .

Before presenting the promised inclusion relations, we will provide a new defini-
tion.

Definition 3.10. A sequence x = (z,,) in a g-metric space (X,g) is said to be
So.x-convergent to x if for every e > 0,
gy ‘
nhﬁn;(} W Hzl,zQ, oty €l g (xail(m),xaiZ(m), ...,xngj(m),a:) > 5}‘ =0,
n

uniformly in m. In this case, we write gS, x-limz, =x or z, — = (gSm,\) .

Definition 3.11. A sequence x = (x,,) in a g-metric space (X,g) is said to be
strongly g (V, \)-summable to a number x if

1l

lim ——

m ()’

Z g <$011(m),1‘gi2(m), vy L i (m)’x) =0

11,82,...,85E€In

uniformly in m =1,2,3, ..., (denoted by gf/o.)\-lim Ty =T OT Ty, — T (g\//\},.))).

Now we give some inclusion relations between ¢S, » and gV; x.
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Theorem 3.12. The following statements hold
)z, >z (g‘A/m,\) then z,, — (g§0,>\>

(ti) f 2 € boo and x, — x (ggg,,\) then z,, — = (g‘A/U,A), and hence z, —
z(9[C,1]).

Proof. (i) Let e >0 and =, = = <g‘707>\>. Then we can write

o'i(m) ¥

i1sin,. i €Dy

> E g(‘ro’il(m)azai2(m)7" T, ij )
01,82,..0,85€In

o'i(m)’
g (zail (m)Foi2 (m)r T . ,,r) >e

> 0 (Tt Tata gy o T oy )

> € ’{21,22, i €L, g (x[,il(m),mgiz(m), ey T (m),x) > EH .

and so
Rl
e. (M)’ i1,82,00005 €D,
J! o .
- ()\n)j {217227""” €ln:yg (inl(m)?xg'iQ(m)) s Tl (m)s ) > E}‘ :

Hence, we obtain x,, — x (g:?\(,_,)\).

(7i) Suppose that = € {o and z,, — © (g§g,>\). If x € {4, then, we can assume
that

g (;Ta.il(m),xo.iz(m) s Lty () © ) < M for all j and m.

Given € > 0, we have

4!
) Z 9\ Zoir(m)r Taiz(m)s =+ Loti (m) ¥
( ’I’L) i177;2y~~7ij61n
J!
\ j Z g(xgil(m),$0i2(m),.. .’L‘Uz](m),l‘)
( TL) 21589 ,e.ny ijefn
9(3701’1 (m) Ttz (myr T i (m),GC) e
4!
+ A J Z g(xffil(m)7m0i2( )2 Lots(my> T )
(An) i1yiyenrig €1p
g(wail<m>’$aiz(m)""’wai]‘<m>’w><€
g!
<M

J
n

.. . 9 9
{117123 oty € I, : g (‘rail(m)axaiz(m) R (m)’ ) > 5}’ + 5
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As a result, we conclude that z,, — = (91707 ,\>. Additionally, we obtain

n
1l
D D] CRNMIE NNSRE )
01,02,...,05=1
n—>An
il
=L Z g (:1007:1(771),x(,ig(m)7 y Ly (m)ax>
91,12,. 774121
il
oD 9 (xf”wmw Loiz(m)s -+ Lo'i (m)> x)
il;i27 7ij eIn
n—>An
1
< (Ajn)J Z g (x””(m)’xai?(m)’""waiﬂ'(m)’x)
11,82,..,85=1
jt
+(>\Jn)’ Z g (x‘f”(m)’xai"’(m)’ SRR (m)’w)
TR -
25!
= (Ai)] Z g (x"“(m)vxaw(m)’ = Loti(m) ¥
11,02,...,5 €1y
Hence z,, — z (¢ [C, 1]), since z,, — z (MZ;,A) . 0
Theorem 3.13. If
A J
lim inf Q) ”.) >0 (3.1)
nJ
then
g5 — limx,, = x implies gS, » —limz, = z.
Proof. For any given ¢ > 0 we get
{il,ig, .,ij el,:g (wail(m),xgig(m), o T i (m),{E) > 5}
< {il,i% ijsnig (zml(m)wm(m), ..,xa,-_,.(m),x) = 5}'

This gives
ity .
v ‘{11,22, i S<nig (xail(m),inQ(m)7 ,xgij(m),x) > EH
,...,xoij(m)w) > EH

it :
> E ‘{217@27“‘77/j el ) (xoil(m)7xa'i2(m)
{’il,ig, ...,ij el,: g (ngl(m),xgiz(m), ...,xaij(m),iﬂ) > 6}’ .
(]

> L‘”,)J. ! ,
Taking the limit as n — oo and using equation (3.1]), we obtain the desired result.

- nJ ()\n)]
This concludes the proof.
If we set o(n) =n + 1 in the aforementioned Definitions 3.9, 3.10, and 3.11, we

obtain the following definitions:
Definition 3.14. A sequence x = (x,,) in a g-metric space (X,g) is said to be
almost statistically convergent to x provided that for all € > 0,
N LT .
nh~>néo E |{7’177'27 ) g <n: g (xi1+M7$i2+ma "'axij-‘rmnx) > €}| = 07

uniformly in m.



12 M. GURDAL, S. KOLANCI, O. KISI

In this case, we write g§-lim Tp =T OF Ty, = T (g§> :

Definition 3.15. A sequence x = (z,) in a g-metric space (X,g) is said to be
almost A-statistically convergent to x provided that for all € > 0,

nh~>nolo ()\T)j |{i17i23 "'5ij € In ‘g (Ii1+M7xi2+m7 "'7xij+max) > €}| = Oa

uniformly in m.
In this case, we write g§,\—lim Ty, =2 OF Ty — T (g:S’\)\).
If A, = n, for all n, then ggA is same as g.§.

Definition 3.16. A sequence x = (z,) in a g-metric space (X,g) is said to be
strongly almost A-summable to a number x if

1l
lim —2—
" (An)’

E g(Ii1+M7xi2+m7"'7xij+ma‘r) =0

i17i2>~~-7ij61n
uniformly in m =1,2,3, ..., (denoted by g {‘A/,\} dimz, =x or z, — ([g‘A/,\D)

Remark. Similar inclusions to Theorems 3.12 and 3.18 hold between strongly -
almost statistically convergent and almost \-statistically convergent.
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