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ON GENERALIZED STATISTICAL CONVERGENCE IN

g-METRIC SPACES

MEHMET GÜRDAL, SAIME KOLANCI, ÖMER KIŞI

Abstract. This manuscript focuses on the investigation of λ-statistical con-

vergence, λ-statistically Cauchy sequences in g-metric spaces, and the relation-
ship between these concepts. We investigate almost λ-statistical convergence

by using the notion of (V, λ)-summability to generalize the concept of sta-

tistical convergence in g-metric space. Moreover, we expand the definition
of λ-statistical convergence to encompass invariant statistical convergence as

well as invariant λ-statistical convergence in g-metric spaces. We delve into

the examination of their intriguing and fundamental properties.

1. Introduction

For numerous decades, the study of summability theory and sequence conver-
gence has been one of the most significant and active areas of academic effort in pure
mathematics. Its substantial works may also be used in topology, functional analy-
sis, Fourier analysis, measure theory, applied mathematics, mathematical modeling,
computer science, and other fields. In recent years, many mathematicians have used
the concept of statistical convergence of sequences, which was first introduced by
Fast [8] as an extension of the usual concept of sequential limits, as a tool to solve
many open problems in the area of sequence spaces and summability theory, as
well as in some other applications. One may refer to [6, 10]. Mursaleen [15], on the
other hand, introduced the concept of λ-statistical convergence as a novel approach
and explored its connections to statistical convergence, strongly Cesro summabil-
ity, and strongly (V, λ)-summability. In recent years, Braha [3, 4], Esi et al. [7],
Hazarika et al. [11], Kii and Nuray [13], Sava [17], and Sava and Nuray [18] have
generalized the notions of asymptotically equivalent, λ-statistical convergence, al-
most λ-statistical convergence, and invariant statistical convergence. For further
background on sequence spaces and related topics, readers are encouraged to refer
to the monographs [2] and [16].

Various methods exist for extending the notion of a distance function (refer to
[12] for details). One noteworthy approach is the concept of a G-metric space,
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introduced by Mustafa and Sims [14], which presents a fresh and distinctive gener-
alization of the ordinary metric. In this framework, metrics represent the distance
between three locations. Choi et al. proposed a concept called g-metric, which
extends the idea of a distance function, in [5]. The g-metric with degree n is a
distance function involving n + 1 points, and it provides a generalization of both
the ordinary distance between two points and the G-metric between three points.
Abazari recently introduced the notion of statistical g-convergence in [1], extending
the concept of a metric.

The primary objective of this research is to introduce the concepts of λ-statistically
convergent sequences and λ-statistically g-Cauchy sequences, and explore their
properties in g-metric spaces. Additionally, we extend the definition of λ-statistical
convergence to invariant statistical convergence and invariant λ-statistical conver-

gence, and examine their relationship with g
[
V̂λ

]
and gŜλ. Furthermore, we will

present natural inclusion theorems in addition to these definitions.

2. Preliminaries

In this section, we will review specific definitions and results that form the basis
of the current study. We will begin by presenting several definitions.

The main concept underlying statistical convergence is the notion of natural
density. The natural density of a set A ⊆ N is denoted and defined as follows:

δ(A) = lim
n

1
n |{k ∈ A : k ≤ n}|,

where the vertical bars denote the cardinality of the set enclosed.
A real-valued sequence x = (xk) is said to be statistically convergent to the real
number x if for every ε > 0,

δ({k ∈ N : |xk − x| ≥ ε}) = 0.

We shall also use S to denote the set of all statistically convergent sequences.
The concept of λ-statistical convergence of sequences x = (xk) of real numbers

has been studied by Mursaleen [15]. Let λ = (λn) be a non-decreasing sequence of
positive real numbers that tends to infinity, satisfying λn+1 ≤ λn + 1 and λ1 = 1.
The generalized de la Valle-Poussin mean is defined as

tn (x) =
1

λn

∑
k∈In

xk

where In = [n− λn + 1, n] for n = 1, 2, ....
If λn = n, then (V, λ)-summability reduces to (C, 1)-summability. We denote

[C, 1] =

{
x = (xn) : ∃L ∈ R, lim

n
n−1

n∑
k=1

d (xk, x) = 0

}
and

[V, λ] =

{
x = (xn) : ∃L ∈ R, lim

n
λ−1
n

∑
k∈In

d (xk, x) = 0

}
for the sets of sequences x = (xk) that are strongly Cesro summable and strongly
(V, λ)-summable to a number x, respectively.
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A sequence of real numbers x = (xk) is said to be λ-statistically convergent to
the number x if for every ε > 0,

lim
n

1

λn
|{k ∈ In : d (xk, x) ≥ ε}| = 0.

In this case, we denote the λ-statistical limit of (xk) as Sλ-limxk = x or xk →
x (Sλ).

Remark. If λn = n, then Sλ is equivalent to S.

Throughout the paper, let (Y, g) denote a g-metric space, and let (xn) be a
sequence in Y .

Definition 2.1 ([14]). Let Y be a nonempty set, and a function G : Y ×Y ×Y → R+

that satisfies the following five properties is called a generalized metric or, briefly,
a G-metric on Y . The pair (Y,G) is referred to as a G-metric space.
i) G (u, v, x) = 0 if u = v = x,
ii) 0 < G (u, u, v); for each u, v ∈ G, with u 6= v,
iii) G (u, u, v) ≤ G (u, v, x), for each u, v, x ∈ Y with x 6= v,
iv) G (u, v, x) = G (u, x, v) = G (v, x, u) = · · · (symmetry in all three variables),
v) G (u, v, x) ≤ G (u, α, α)+G (α, v, x), for each u, v, x, α ∈ Y (rectangle inequality).

Subsequently, Choi et al. [5] introduced g-metric functions of degree n.

Definition 2.2. Let Y be a nonempty set. A function g : Y j+1 → R+ that satisfies
the following features is called a g-metric with order j on Y . The pair (Y, g) is
referred to as a g-metric space.
gi) g (x0, x1, ..., xj) = 0 iff x0 = x1 = ... = xj ,
gii) g (x0, x1, ..., xj) = g

(
xρ(0), xρ(1), ..., xρ(j)

)
, for permutation ρ on {0, 1, ..., j},

giii) g (x0, x1, ..., xj) ≤ g (q0, q1, ..., qj), for each (x0, x1, ..., xj), (q0, q1, ..., qj) ∈
Y j+1 with

{xi : i = 0, 1, ..., j} ⊆ {qi : i = 0, 1, ..., j} ,

giv) For all x0, x1, ..., xs, q0, q1, ..., qt, v ∈ Y with s+ t+ 1 = j,

g (x0, x1, ..., xs, q0, q1, ..., qt) ≤ g (x0, x1, ..., xs, v, v, ..., v) + g (q0, q1, ..., qt, v, v, ..., v) .

It is obvious that when j = 1, we have an ordinary metric space, and when j = 2,
we have a G-metric space.

The following theorem will be required in the main findings.

Theorem 2.3. Let Y be a nonempty set, and let g be a metric with order j on Y .
In this context, the following properties are provided:

1) g(x, ..., x︸ ︷︷ ︸
s times

, q, ..., q) ≤ g(x, ..., x︸ ︷︷ ︸
s times

, u, ..., u) + g(u, ..., u︸ ︷︷ ︸
s times

, q, ..., q),

2) g (x, q, ..., q) ≤ g (x, u, ..., u) + g (u, q, ..., q) ,
3) g(x, ..., x︸ ︷︷ ︸

s times

, u, ..., u) ≤ sg (x, u, ..., u) and g(x, ..., x︸ ︷︷ ︸
s times

, u, ..., u) ≤ (j + 1− s) g (u, x, ..., x) ,

4) g (x0, x1, ..., xj) ≤
n∑
i=0

g (xi, u, ..., u) ,

5) |g (q, x1, x2, ...., xj)− g (u, x1, x2, ...., xj)| ≤ max {g (q, u, ...., u) , g (u, q, ...., q)},
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6)

∣∣∣∣∣∣g(x, ..., x︸ ︷︷ ︸
s times

, u, ..., u)− g(x, ..., x︸ ︷︷ ︸
s′ times

, u, ..., u)

∣∣∣∣∣∣ ≤ |s− s′| g (x, u, ..., u) ,

7) g (x, u, ..., u) ≤ (1 + (s− 1)) (j + 1− s) g(x, ..., x︸ ︷︷ ︸
s times

, u, ..., u).

Definition 2.4 ([1]). Let (xn) be a sequence in a g-metric space (Y, g).
(i) The sequence (xn) is said to be statistically convergent to x, provided that for

all ε > 0,

lim
n→∞

j!

nj
∣∣{i1, i2, ..., ij ≤ n : g

(
x, xi1 , xi2 , ..., xij

)
≥ ε
}∣∣ = 0,

and is denoted by gS-limn→∞ xn = x.
(ii) The sequence (xn) is called statistically g-Cauchy, provided that for all ε > 0,

there exists iε ∈ N such that

lim
n→∞

j!

nj
∣∣{i1, i2, ..., ij ≤ n : g

(
xiε , xi1 , xi2 , ..., xij

)
≥ ε
}∣∣ = 0.

3. Main Results

Based on the aforementioned definitions and results, we aim to introduce novel
concepts of λ-statistically convergent sequences in the context of metrics on g-metric
spaces in this section. Furthermore, we will provide natural inclusion theorems in
addition to these definitions.

Now, we are prepared to define λ-statistical convergence in the g-metric space
(X, g).

Definition 3.1. A sequence x = (xn) in a g-metric space (X, g) is said to be
λ-statistically convergent to x if for every ε > 0,

δjλ (A (n)) = lim
n→∞

j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi1 , xi2 , ..., xij , x

)
≥ ε
}∣∣ = 0,

or

lim
n→∞

j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi1 , xi2 , ..., xij , x

)
< ε
}∣∣ = 1.

In that case, we denote gSλ-limxn = x or xn → x (gSλ). When λn = n for all
n, the notion of gSλ-statistical convergence for sequences reduces to the concept of
g-statistical convergence as defined in [1, Definition 2.4(i)].

Theorem 3.2. Every convergent sequence in a g-metric space is also λ-statistically
convergent.

Proof. According to the definition provided in [5, Definition 4.1], let us assume that
the sequence (xn) g-converges to x. For any ε > 0, there exists N ∈ N such that

i1, i2, ..., ij > N =⇒ g
(
x, xi1 , xi2 , ..., xij

)
< ε.

Let us consider

A (n) =
{
i1, i2, ..., ij ∈ In : g

(
xi1 , xi2 , ..., xij , x

)
< ε
}
.

We can observe that

|A (n)| ≥
(
λn − λN

j

)
,
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and

lim
n→∞

j!

(λn)
j
|A (n)| ≥ lim

n→∞

j!

(λn)
j

(
λn − λN

j

)
= 1.

Therefore, we conclude that gSλ-limxn = x as desired. �

The following theorem establishes the uniqueness of the statistical limit in a
g-metric space.

Theorem 3.3. If (xn) is a sequence in a g-metric space (X, g) such that gSλ-
limxn = x and gSλ-limxn = y, then x = y.

Proof. For any arbitrary ε > 0, we define the sets:

A(n) :=

{
i1, i2, ..., ij ∈ In : g

(
x, xi1 , xi2 , ..., xij

)
≥ ε

2j

}
,

B(n) :=

{
i1, i2, ..., ij ∈ In : g

(
y, xi1 , xi2 , ..., xij

)
≥ ε

2j

}
.

Since gSλ-limxn = x and gSλ-limxn = y, we have δjλ (A(n)) = 0 and δjλ (B(n)) = 0.

Let C(n) := A(n) ∪B(n). Then δjλ (C(n)) = 0, which implies δjλ (Cc(n)) = 1.
Suppose i1, i2, ..., ij ∈ Cc (n). By Theorem 2.3, we have

g (x, y, y, ..., y) ≤ g (x, xi1 , xi1 , ..., xi1) + g (xi1 , y, y, ..., y)

≤ g (x, xi1 , xi1 , ..., xi1) + j (g (y, xi1 , xi1 , ..., xi1))

≤ g
(
x, xi1 , xi2 , ..., xij

)
+ j

(
g
(
y, xi1 , xi2 , ..., xij

))
≤ j

(
g
(
x, xi1 , xi2 , ..., xij

)
+ g

(
y, xi1 , xi2 , ..., xij

))
< j

(
ε

2j
+

ε

2j

)
= ε.

Since ε > 0 is arbitrary, we have

g (x, y, y, ..., y) = 0,

which implies x = y. �

Definition 3.4. A sequence x = (xn) in a g-metric space (X, g) is said to be
λ-statistically g-Cauchy if for each ε > 0, there exists i0 ∈ In such that

lim
n→∞

j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi0,xi1 , xi2 , ..., xij

)}
≥ ε
∣∣ = 0.

If λn = n for all n, the notion of λ-statistically g-Cauchy sequence is equivalent
to the concept of statistical g-Cauchy sequence as defined in [1] (Definition 2.4(ii)).

Theorem 3.5. Let (X, g) be g-metric space. If the sequence (xn) is λ-statistically
convergent, then (xn) is λ-statistically g-Cauchy.

Proof. Let (xn) be a λ-statistically convergent sequence in g-metric space (X, g)
and ε > 0, then

lim
n→∞

j!

(λn)
j

∣∣∣∣{i1, i2, ..., ij ∈ In : g
(
x, xi1 , xi2 , ..., xij

)
<

ε

j (j + 1)

}∣∣∣∣ = 1.
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By the monotonicity condition of the g-metric and Theorem 2.3, we can conclude
that

g
(
xi0,xi1 , xi2 , ..., xij

)
≤

j∑
k=0

g (xik,x, x, ..., x)

≤
j∑

k=0

jg (x,xik , xik , ..., xik)

< j (j + 1) g
(
x,xi1 , xi2 , ..., xij

)
< j (j + 1)

ε

j (j + 1)
= ε.

From the above inequality, we have{
i1, i2, ..., ij ∈ In : g

(
x,xi1 , xi2 , ..., xij

)
<

ε

j (j + 1)

}
⊆
{
i1, i2, ..., ij ∈ In : g

(
xi0 , xi1 , xi2 , ..., xij

)
< ε
}
.

Thus

lim
n→∞

j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi0 , xi1 , xi2 , ..., xij

)
< ε
}∣∣ = 1

is obtained and it is demonstrated that (xn) is a λ-statistically g-Cauchy sequence
in (X, g) . �

Let Λ be the set of all non-decreasing sequences λ = (λn) of positive numbers
that tend to infinity and satisfy λn+1 ≤ λn+1 with λ1 = 1. Additionally, we denote

g [C, 1] =

x = (xj) : ∃x ∈ R, lim
n

j!

nj

n∑
i1,i2,...,ij=1

g
(
xi1 , xi2 , ..., xij , x

)
= 0


and

g [V, λ] =

x = (xj) : ∃x ∈ R, lim
n

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
= 0


for the sets of sequences x = (xj) which are strongly g-Cesáro summable and
strongly g (V, λ)-summable to a number x, i.e. xn → x (g [C, 1]) and xn → x (g [V, λ])
respectively.

Proofs of the following result are straightforward and omitted.

Theorem 3.6. Let (xn) be a sequence in g-metric space (X, g) . Then
i) If xn → x (g [C, 1]), then xn → x (gSλ) .
ii) If (X, g) is bounded and xn → x (gSλ), then xn → x (g [C, 1]).

Theorem 3.7. Let (X, g) be a g-metric space. Then, following statements hold:
(i) If xn → x (g [V, λ]) then xn → x (gSλ) , and the inclusion g [V, λ] ⊆ gSλ is

proper.
(ii) If x ∈ `∞ and xn → x (gSλ), then xn → x (g [V, λ]) .
(iii) gSλ ∩ `∞ = g [V, λ] ∩ `∞.
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Proof. (i) Let xn → x (g [V, λ]) . Then, for ε > 0, we have∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
≥

∑
i1,i2,...,ij∈In

g(xi1 ,xi2 ,...,xij ,x)≥ε

g
(
xi1 , xi2 , ..., xij , x

)

≥ ε
∣∣{i1, i2, ..., ij ∈ In : g

(
xi1 , xi2 , ..., xij , x

)
≥ ε
}∣∣ .

Hence, we have xn → x (gSλ) .
It is easy to see that the inclusion g [V, λ] ⊆ gSλ is proper.
(ii) To prove part (ii), we assume that x = (xn) is in `∞ and xn → x (gSλ).

Then, we can assume that

g
(
xi1 , xi2 , ..., xij , x

)
≤M for all j.

Given ε > 0, we obtain

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
=

j!

(λn)
j

∑
i1,i2,...,ij∈In

g(xi1 ,xi2 ,...,xij ,x)≥ε

g
(
xi1 , xi2 , ..., xij , x

)

+
j!

(λn)
j

∑
i1,i2,...,ij∈In

g(xi1 ,xi2 ,...,xij ,x)<ε

g
(
xi1 , xi2 , ..., xij , x

)

≤M j!

(λn)
j

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xi1 , xi2 , ..., xij , x

)
≥ ε

2

}∣∣∣+
ε

2
.

As a result, we can conclude that xn → x (g [V, λ]). Moreover, we can express this
as

j!

nj

n∑
i1,i2,...,ij=1

g
(
xi1 , xi2 , ..., xij , x

)
=

j!

nj

n−λn∑
i1,i2,...,ij=1

g
(
xi1 , xi2 , ..., xij , x

)
+
j!

nj

∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
≤ j!

(λn)
j

n−λn∑
i1,i2,...,ij=1

g
(
xi1 , xi2 , ..., xij , x

)
+

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
≤ 2j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xi1 , xi2 , ..., xij , x

)
.

Since xn → x (g [V, λ]), the desired xn → x (g [C, 1]) is attained.
(iii) This follows directly from (i) and (ii). �

It is evident that xn → x (gSλ) ⊆ xn → x (gS) for all λ, since (λn)j

nj is bounded
by 1. Therefore, we establish the following relation.
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Theorem 3.8. gS ⊆ gSλ iff lim inf (λn)j

nj > 0.

Proof. For a given ε > 0, we observe that{
i1, i2, ..., ij ∈ In : g

(
xi1 , xi2 , ..., xij , x

)
≥ ε
}

⊂
{
i1, i2, ..., ij ≤ n : g

(
xi1 , xi2 , ..., xij , x

)
≥ ε
}
.

This yields

j!

nj
∣∣{i1, i2, ..., ij ≤ n : g

(
xi1 , xi2 , ..., xij , x

)
≥ ε
}∣∣

≥ j!

nj
∣∣{i1, i2, ..., ij ∈ In : g

(
xi1 , xi2 , ..., xij , x

)
≥ ε
}∣∣

≥ (λn)
j

nj
.
j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi1 , xi2 , ..., xij , x

)
≥ ε
}∣∣ .

Taking the limits as n → ∞ and employing the fact that lim inf (λn)j

nj > 0, we
obtain

xj → x (gS)⇒ xj → x (gSλ) .

Conversely, suppose that lim inf (λn)j

nj = 0. As in [[9], p. 510], we can choose a

subsequence (n (p))
∞
p=1 such that (λn(p))j

n(p)j
< 1

p . Let X = R and g be the following

metric: g : R3 → R+, g (x, y, z) = max {|x− y| , |x− z| , |y − z|} . We define a
sequence x = (xn) by

xn =

{
1 if i1, i2, ..., ij ∈ In(p),
0 otherwise.

It is clear that x ∈ g [C, 1], and therefore, by [[6], Theorem 2.1], x ∈ gS. However,
on the other hand, x /∈ g [V, λ] and Theorem 3.7(ii) implies that x /∈ gSλ. Hence,

lim inf (λn)j

nj > 0 is a necessary condition. �

Let σ be a mapping from the positive integers to themselves. A continuous linear
functional ϕ on `∞ is said to be an invariant mean or a σ-mean if it satisfies the
following conditions:

(i) ϕ (x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) ϕ (e) = 1, where e = (1, 1, 1, ...) and
(iii) ϕ

(
xσ(n)

)
= ϕ (xn) for all x ∈ `∞, where `∞ denotes the set of bounded

sequences.
The mapping σ is assumed to be one-to-one and satisfies σm(n) 6= n for all

n,m ∈ Z+, where σm(n) denotes the mth iterate of the mapping σ at n. Thus, the
functional ϕ extends the limit functional on c, the space of convergent sequences,
in the sense that ϕ(xn) = limxn for all x ∈ c. In the case where σ is the translation
mapping σ(n) = n+1, the σ-mean is often referred to as a Banach limit. The space
Vσ, which consists of bounded sequences whose invariant means are equal, can be
shown to satisfy the following property:

Vσ =

{
x ∈ `∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L, uniformly in m

}
.
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In [19], Schaefer proved that a bounded sequence x = (xk) of real numbers is
σ-convergent to L if and only if the following condition holds

lim
k→∞

1

k

k∑
i=1

xσi(m) = L,

uniformly in m.
A sequence x = (xk) is said to be strongly σ-convergent to L if there exists a
number L such that

lim
k→∞

1

k

k∑
i=1

d
(
xσi(m), L

)
= 0,

as k →∞, uniformly in m. We denote the set of all strongly σ-convergent sequences
as [Vσ].
A sequence x = (xn) ∈ `∞ is said to be almost convergent if all of its Banach
limits coincide. The spaces of almost convergent sequences and strongly almost
convergent sequences are defined respectively by

ĉ =
{
x ∈ `∞ : lim

m
tmn (x) exists uniformly in n

}
and

[ĉ] =
{
x ∈ `∞ : lim

m
tmn (|x− le|) exists uniformly in n for some l ∈ C

}
where tmn (x) = xn+xn+1+...+xn+m

m+1 and e = (1, 1, ...) . Taking σ (m) = m + 1, we

obtain [Vσ] = [ĉ] .

Definition 3.9. A sequence x = (xn) in a g-metric space (X, g) is said to be
Sσ-convergent to x if for every ε > 0,

lim
n→∞

j!

nj

∣∣∣{i1, i2, ..., ij ≤ n : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣ = 0,

uniformly in m. In this case, we write gŜσ-limxn = x or xn → x
(
gŜσ

)
.

Before presenting the promised inclusion relations, we will provide a new defini-
tion.

Definition 3.10. A sequence x = (xn) in a g-metric space (X, g) is said to be
Sσ,λ-convergent to x if for every ε > 0,

lim
n→∞

j!

(λn)
j

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣ = 0,

uniformly in m. In this case, we write gŜσ,λ-limxn = x or xn → x
(
gŜσ,λ

)
.

Definition 3.11. A sequence x = (xn) in a g-metric space (X, g) is said to be
strongly g (V, λ)-summable to a number x if

lim
n

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
= 0

uniformly in m = 1, 2, 3, ..., (denoted by gV̂σ,λ-limxn = x or xn → x
(
gV̂σ,λ

)
).

Now we give some inclusion relations between gŜσ,λ and gV̂σ,λ.
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Theorem 3.12. The following statements hold:

(i) If xn → x
(
gV̂σ,λ

)
then xn → x

(
gŜσ,λ

)
,

(ii) If x ∈ `∞ and xn → x
(
gŜσ,λ

)
then xn → x

(
gV̂σ,λ

)
, and hence xn →

x (g [C, 1]) .

Proof. (i) Let ε > 0 and xn → x
(
gV̂σ,λ

)
. Then we can write

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥

∑
i1,i2,...,ij∈In

g

(
x
σi1 (m)

,x
σi2 (m)

,...,x
σ
ij (m)

,,x

)
≥ε

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)

≥ ε
∣∣∣{i1, i2, ..., ij ∈ In : g

(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣ .

and so

j!

ε. (λn)
j

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ j!

(λn)
j

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣ .

Hence, we obtain xn → x
(
gŜσ,λ

)
.

(ii) Suppose that x ∈ `∞ and xn → x
(
gŜσ,λ

)
. If x ∈ `∞, then, we can assume

that

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≤M for all j and m.

Given ε > 0, we have

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
=

j!

(λn)
j

∑
i1,i2,...,ij∈In

g

(
x
σi1 (m)

,x
σi2 (m)

,...,x
σ
ij (m)

,x

)
≥ε

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)

+
j!

(λn)
j

∑
i1,i2,...,ij∈In

g

(
x
σi1 (m)

,x
σi2 (m)

,...,x
σ
ij (m)

,x

)
<ε

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)

≤M j!

(λn)
j

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε

2

}∣∣∣+
ε

2
.
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As a result, we conclude that xn → x
(
gV̂σ,λ

)
. Additionally, we obtain

j!
nj

n∑
i1,i2,...,ij=1

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
= j!

nj

n−λn∑
i1,i2,...,ij=1

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
+ j!
nj

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≤ j!

(λn)j

n−λn∑
i1,i2,...,ij=1

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
+ j!

(λn)j

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≤ 2j!

(λn)j

∑
i1,i2,...,ij∈In

g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
.

Hence xn → x (g [C, 1]), since xn → x
(
gV̂σ,λ

)
. �

Theorem 3.13. If

lim inf
(λn)

j

nj
> 0 (3.1)

then

gŜλ − limxn = x implies gŜσ,λ − limxn = x.

Proof. For any given ε > 0 we get{
i1, i2, ..., ij ∈ In : g

(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}

⊂
{
i1, i2, ..., ij ≤ n : g

(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}
.

This gives

j!

nj

∣∣∣{i1, i2, ..., ij ≤ n : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣

≥ j!

nj

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣

≥ (λn)
j

nj
.
j!

(λn)
j

∣∣∣{i1, i2, ..., ij ∈ In : g
(
xσi1 (m), xσi2 (m), ..., xσij (m), x

)
≥ ε
}∣∣∣ .

Taking the limit as n→∞ and using equation (3.1), we obtain the desired result.
This concludes the proof. �

If we set σ(n) = n+ 1 in the aforementioned Definitions 3.9, 3.10, and 3.11, we
obtain the following definitions:

Definition 3.14. A sequence x = (xn) in a g-metric space (X, g) is said to be
almost statistically convergent to x provided that for all ε > 0,

lim
n→∞

j!

nj
∣∣{i1, i2, ..., ij ≤ n : g

(
xi1+m, xi2+m, ..., xij+m, x

)
≥ ε
}∣∣ = 0,

uniformly in m.
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In this case, we write gŜ-limxn = x or xn → x
(
gŜ
)
.

Definition 3.15. A sequence x = (xn) in a g-metric space (X, g) is said to be
almost λ-statistically convergent to x provided that for all ε > 0,

lim
n→∞

j!

(λn)
j

∣∣{i1, i2, ..., ij ∈ In : g
(
xi1+m, xi2+m, ..., xij+m, x

)
≥ ε
}∣∣ = 0,

uniformly in m.

In this case, we write gŜλ-limxn = x or xn → x
(
gŜλ

)
.

If λn = n, for all n, then gŜλ is same as gŜ.

Definition 3.16. A sequence x = (xn) in a g-metric space (X, g) is said to be
strongly almost λ-summable to a number x if

lim
n

j!

(λn)
j

∑
i1,i2,...,ij∈In

g
(
xi1+m, xi2+m, ..., xij+m, x

)
= 0

uniformly in m = 1, 2, 3, ..., (denoted by g
[
V̂λ

]
-limxn = x or xn → x

([
gV̂λ

])
).

Remark. Similar inclusions to Theorems 3.12 and 3.13 hold between strongly λ-
almost statistically convergent and almost λ-statistically convergent.

4. Acknowledgement

The authors thank to the referees for valuable comments and fruitful suggestions
which enhanced the readability of the paper.

References

[1] R. Abazari, Statistical convergence in g-metric spaces, Filomat, 36 5 (2022), 1461-1468.
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[10] M. Gürdal, A. Şahiner, Extremal I-limit points of double sequences, Appl. Math. E-Notes, 8

(2008), 131-137.

[11] B. Hazarika, A. Esi, N. L. Braha, On asymptotically Wijsman lacunary σ-statistical conver-
gence of set sequences, J. Math. Anal., 4 3 (2013), 33–46.

[12] M.A. Khamsi, Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17 3

(2015), 455-475.
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