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EXAMINING LONG-TERM MEMORY AND ASYMMETRY IN

LOG RETURNS OF THE TOP40 AND NSE20 INDICES

JOSEPH IVIVI MWANIKI

Abstract. In this research study, we explore the existence of long-term mem-
ory in return patterns within the financial markets of South Africa and Kenya
during the time frame spanning 1995 to 2010. Our empirical findings reveal no-
table linear autocorrelation of third order for the NSE20 index and first order
autocorrelation for the TOP40 index.Furthermore, we reveal strong evidence
of changing variance within both indices, along with increased autocorrelation
in absolute returns for both market contexts. Theoretical autocorrelation func-
tions are fitted, and parameters are estimated. Various ARCH-type models
conditioned on a normal distribution are examined. Among these models, the
A-PGARCH model, based on absolute daily returns |yt|d, d ∈ (1, 2), notably
outperforms four other models (TGARCH, GARCH, GARCH-M, and GJR-
GARCH) in modeling the evolving variance and volatility asymmetry in the
two emerging markets.

1. Introduction

Autoregressive conditional heteroscedasticity models (hereafter ARCH) intro-
duced by [1] and later extended to generalized ARCH model by [2] have been
successfully applied in financial time series. GARCH models conditioned on nor-
mal distribution, have been very popular, and effective for modeling the volatility
dynamics in many markets for example [3] investigated presence of stylized facts
across African equity indices. In vast empirical finance literature, such models
within GARCH framework conditioned on non-normal probability densities such
as student t, NIG, variance gamma etc, have been suggested and extensively ana-
lyzed. Sample autocorrelations of log returns yt = lnSt − lnSt−1 of stock indices
St are assumed to be tiny as opposed to the sample autocorrelations of the ab-
solute and squared values which are known to be significantly different from zero
see [5]. This behavior suggests that there is some kind of long-range dependence
in the data. Moreover, [6] postulated that latent news process do have two differ-
ent components, commonly referred to as normal news and unusual events. The
first component has a mean zero, with a normal stochastic forcing process, and
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the jump innovation is the second component. The two components are assumed
to be contemporaneously independent. In this study we follow [5] to investigate
presence of long memory property of the two indices for the first component of yt
conditioned on normal with standardized residues being not only leptokurtic but
also identically and independently distributed in general.

In this article, we investigate a long memory property for both indexes, by study-
ing absolute returns |yt|

d, d ∈ (0.5, 6). The autocorrelation of yt and |yt|
d, d > 0,

is examined. There is a lot of literature on modeling and forecasting volatility, see
for example [4], which is slightly different to what we tend to investigate.

The remainder of the article is arranged as in the following order: Section 2
present the data description and time plots of log returns. In section 3 we carry out
linear autocorrelation analysis of |yt|

d for changing values of d and fit a theoreti-
cal autocorrelation function for the two indices. Parameter estimates of different
GARCH type models are presented in section 4. Section 5 draws the conclusion of
the analysis.

2. Data description

We analyze secondary daily data for TOP40 index and NSE20 index dated July
03,1995 to September 02,2010 and July 03,1995 to April 22,2010 respectively. A
sample size of n = 3651 observations. R Statistical software, is used to carry out
the empirical analysis. Let St denote the value of the value underlying process at
time t = 1, ..., 3651 and yt = logSt − logSt−1,denote daily log returns. It follows
quite easily that

yt = log

(

St

St−1

|Gt−1

)

= µ + σtZt,

where Zt ∼ i.i.d.N(0, 1), σt ∈ ARCH models, and Gt−1 is a filtration set.

Empirical interrogation of stylized facts of log returns begins with the descriptive
statistics, and time plots as shown in the Table 1.

Table 1. Descriptive statistics of daily log returns yt

sample(T) mean median var std skew kurt

NSE20 3651 0.000051 -0.000076 0.000072 0.008461 0.445422 8.096728
TOP40 3651 0.000449 0.000887 0.000212 0.014571 -0.422583 6.145587

2.1. Basic statistics and timeplots. We observe from Table1 that the kurtosis
of yt is higher than 3 from both indices. The Jarque-Bera normality test statistic for
the two indices is above the set critical value for a normal distribution. In general,
this suggests a characteristic of non-normal or leptokurtic property of daily log
returns. Time plots of absolute log returns in Figure 1, indicates that there are
general nonlinear trend inherent in returns. This implies that the market volatility
is changing over time, and ARCH type model would be suitable for modeling a
time varying volatility in both markets.
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Figure 1. TOP40 and NSE20 index time-plot, daily log returns
and absolute daily log returns,1995 − 2010

3. Methodology

3.1. GARCH models. The article analyzes the volatility structure of TOP40
index and NSE20 index. We note that previous studies, show that modeling asym-
metric components, is more crucial than specifying error distributions for improv-
ing volatility forecasts of financial returns in the presence of fat-tailed, leptokurtic,
skewed innovations and leverage effects. If asymmetries are neglected, the GARCH
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models conditioned with normal distribution is preferable to those models with so-
phisticated error distribution, see [3] for example. The model used in this study
incorporates various volatility models including ARMA and asymmetric GARCH
models conditioned on normal distribution. If a series {yt} follows an ARMA(p, q)
model then {yt} can be described as follows,

yt = µ +

p
∑

i=1

aiyt−i +

q
∑

j=1

bjεt−j + εt, εt ∼ N(0, σ2
t )

where ai, bj εj , i = 1, ..., p, j = 1, ..., q are parameters. GARCH model of [2] can
be expressed as ARCH(∞) using a backshift operator L such that

σ2
t = ω + α(L)ε2t + β(L)σ2

t

with α(L) = α1L+ α2L
2 + ...+ αqL

q and β(L) = β1L + β2L+ ...+ βpL
p. If all the

roots lie outside the unit circle, we have

σ2
t =

ω

1 − β(L)
+

α(L)

1 − β(L)
εt

=
ω

1 − β1 − β2 − ...− βp

+

∞
∑

j=1

φjε
2
t−j

where εt|σt ∼ N(0, σ2
t ) which is ARCH(∞) process, introduced by [1].

The assumption of error distribution is the main reason as to why we use the
maximum likelihood estimation (MLE) to the model. Suppose that the error term
is driven by a normal distribution, the uncorrelated standardized residuals are ob-
served to be leptokurtic in nature in tandem with what is in literature about the
stylized facts of financial time series log returns data. Our main interest is to
study the long term changing variance of log returns in emerging markets. The
log-likelihood function is given by

 LT = −
1

2

T
∑

t=1

(

ln(2π) + ln(σ2
t ) + z2t

)

where zt is independently and identically distributed normal (i.i.d.N(0, 1)) and T

is the number of observations.

3.2. Specifications of conditional variance. More formally, to model asymme-
try as well as long memory property of the conditional variance process, let

yt = µ + εt; εt = σtzt, zt ∼ N(0, 1)
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where σ2
t can take any of the following functional forms among others

ARCH(q) σ2
t = ω +

q
∑

i=1

αiε
2
t−i

GARCH(p,q) σ2
t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j

TGARCH(p,q) , σ2
t = ω +

q
∑

i=1

[

αi|εt−i| + γi|ε
+
t−i|

]

+

p
∑

j=1

βjσ
2
t−j

GJR-GARCH(p,q) , σ2
t = ω +

q
∑

i=1

[

αi + γiIεt−i>0

]

ε2t−i +

p
∑

j=1

βjσ
2
t−j

A-PGARCH(p,q) , σδ
t = ω +

q
∑

i=1

αi [|εt−i| + γiεt−i]
δ

+

p
∑

j=1

βjσ
δ
t−j .

Empirical studies by [7] hereafter (GJR-GARCH model) show that it is crucial
to include asymmetric term γ in financial log return models. See [8] for more
empirical studies. Asymmetry is estimated in GJR-GARCH model including a
dummy variable in the conditional variance function which takes the value ”1” for
negative shocks and ”0” otherwise. The conditional variance including the dummy
variable is defined as TGARCH model of [9]. In general, for A-PGARCH(1,1)
specification, we estimate the parameters of the model,

yt = µ + εt, εt ∼ N(0, σ2
t )

σδ
t = ω + α(|εt−1| − γεt−1)

δ + βσδ
t−1

α + β < 1; ω > 0, δ > 0

where γ reflect the leverage effect and δ > 0 is the Box-Cox transformation of σt.
In general,this model nests other models, such as

• ARCH Engle(1982) when δ = 2, γ = 0, β = 0
• GARCH Bolerslev(1986) when δ = 2, γ = 0
• GJR Glosten etal(1993) when δ = 2

We fit ARMA(k,0) APARCH(1,1) model conditioned on a i.i.d.(0, 1) distribution.

4. Linear Autocorrelation

We examine the sample autocorrelations for the two indices. Sample autocorre-
lations of the absolute returns |yt|

d for various positive values of d were investigated.
Figure 3 gives corr(|yt|

d, |yt+τ |
d) for d = 0.125, 0.25, 0.5, 0.75, ..., 3 at lag (τ) 1 to

5, and 20 ,40 80,100.We note that both market returns have similar shape and the
optimal correlation is attained when d ∈ (1, 3).

4.1. Sample Autocorrelation Curve. As per the study by [5], the autocorrela-
tion ρτ (d) is observed to be a smooth function of d across a range of values, with d

taking on values such as 0.0125, 0.25, ..., 3, and τ ranging from 1 to 230. Our own
findings from the two datasets align with this observation.

Empirical evidence suggests the presence of either a saddle point or an optimal

point denoted as d̂ within the range of (2,3). When d < d̂, ρτ (d) behaves as a

concave function of d, and when d > d̂, it takes on a convex shape concerning d.
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Figure 2. ACF plots of log returns(continuous black near zero),
absolute log returns(decaying exponentially dotted black) d = 1,
when d = 1.45 (blue), and squared log returns respectively d =
2(red)

Table 2 presents the lags at which the first negative τ∗ autocorrelations of |rτ |
d

occur for both indices.

Table 2. Lags(τ∗) at which first negative autocorrelations of |yt|
d

occurs at various d

d 1.1125 1.4875 1.8625 2.9875 3.2375 3.3625 3.8625 5.1125

TOP40 τ∗ 235 232 185 76 43 40 38 7
NSE20 τ∗ 281 280 111 44 44 44 14 11

We fit the preferred theoretical autocorrelation function ( see [5]) specified as
model characterised by the graphical representation in Figure 2 and Figure 4.

ρτ =
αρ

β1

τ−1β
τ
2

τβ3

; ⇒ log ρτ = logα + β1 log ρτ−1 + τ log β2 − β3 log τ

⇒ log ρτ = α∗ + β∗

1 log ρt−1 + β∗

2τ + β∗

3 log τ

The fitted model for the two indices (TOP40 and NSE20) are as given below. The
parameter α∗ = loge α is not significant for both cases suggesting that α = 1 with
the adjusted coefficient of determination being more than 70% as shown in Table
3, hence

TOP40 ρτ =
ρ0.187τ−1 0.9965τ

τ0.397
, NSE20 ρτ =

ρ0.7223τ−1 1.00189τ

τ0.2864
.

Moreover the ACF of the absolute returns |yt|
d, d = 1.4875 for all sets portray an

exponential decay with up to more than 180 lags as shown in Figure 4. We note
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Figure 3. corr(|yt|
d, |yt−h|

d) for h = 1, 2, 3, 4, 5 and d ∈ (0.125, 6)

Figure 4. ACF of |y|d at lags 3, 5, 10, 18 and 25

Figure 5. Lags(τ∗) at which positive autocorrelation of |yt|
d oc-

curs for various values of d for both indices. First negative au-
tocorrelation |yt|

d for NSE20 and TOP40 index two periods, for
various values of d before year 2002 and after.
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Table 3. Ordinary least square estimates of autocorrelation curve
for TOP40 and NSE20

TOP40 Estimate Std. Error t value Pr(>|t|)

α∗ -0.321421 0.217052 -1.480849 0.140040
β∗

1 0.186969 0.065238 2.865946 0.004550
β∗

2 -0.003561 0.001039 -3.428513 0.000721
β∗

3 -0.397235 0.072170 -5.504180 0.000000
R2 72.36%

NSE20 Estimate Std. Error t value Pr(>|t|)

α∗ 0.216095 0.176980 1.221016 0.223130
β∗

1 0.722323 0.039845 18.128172 0.000000
β∗

2 0.001893 0.000654 2.895598 0.004089
β∗

3 -0.286406 0.059772 -4.791607 0.000003
R2 72.04%

that all the power transformations of the absolute returns have a significant positive
correlations at least up to lag 150 which support the claim that both indexes have
a long term memory.

4.2. Sensitivity of Autocorrelation structure. It should be noted from NSE20
time plot of log returns the volatility structure differs considerably before September
9, 2002 and after as seen in Figure 1, of NSE20 time plot. It is of interest to look at
the memory structure for those two periods,i.e, July 3,1995-September 18,2002 and
September 19,2002-April 22,2010. From the two periods, their volatility structure

Table 4. NSE20 index lags at which first negative autocorrelation
|yt|

d occurs for the two periods, before September 2002,and after
September 2002, d = 0.125 : 0.0125 : 6

d 0.7375 1.3625 1.4875 1.9875 3.2375 3.3625 5.1125 5.9875

Before 2002 14 14 14 13 13 11 3 3
After 2002 70 111 109 44 14 14 11 9

was computed and captured in form of a plot as shown in Figure 5 for both cases. It
should be noted that the volatility structure differed considerably. The latest period
appeared more volatile since the autocorrelations for |yt|

d were higher compared to
autocorrelations of the period before September 2002.

5. Empirical Results

5.1. GARCH Modeling Framework. Different ARCH type models were cali-
brated, GARCH(1,1), GJR-GARCH(1,1), A-PGARCH(1,1), TGARCH, and GARCH-
M. All models parameters were calibrated for TOP40 returns and NSE20 returns
conditioned on normal distribution and the following results were obtained.

(1a) AR(1)-GARCH(1,1) model (TOP40 Index )

yt = µ + ρ1yt−1 + εt, εt ∼ N(0, s2t ), s2t = ω + αε2t−1 + βs2t−1
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Table 5. AR(1)-GARCH(1,1) parameter estimates TOP40 daily
log returns

AR-GARCH model L=10851.65

TOP40 Estimate Std. Error t value Pr(>|t|)

µ 0.000738385 0.000175565 4.205752296 0.000026022
ρ1 0.084743371 0.017654094 4.800210861 0.000001585
ω 0.000002611 0.000000644 4.052084305 0.000050763
α 0.112672243 0.011034056 10.211317320 0.000000000
β 0.879740256 0.011310857 77.778392863 0.000000000

(1b) AR(3)-GARCH(1,1) model (NSE20 Index )

yt = µ + ρ1yt−l + ρ2yt−2 + ρ3yt−3 + εt, εt ∼ N(0, s2t ); s2t = ω + αε2t−1 + βs2t−1

Table 6. AR(3)-GARCH(1,1) parameter estimates NSE20 daily
log returns

AR-GARCH model L=13100.03

NSE20 Estimate Std. Error t value Pr(>|t|)

ρ1 0.231799948 0.019157966 12.099402834 0.000000000
ρ2 0.148208534 0.018867985 7.855027075 0.000000000
ρ3 0.085868572 0.018372337 4.673796946 0.000002957
ω 0.000002648 0.000000433 6.117165582 0.000000001
α 0.157141540 0.014737370 10.662793756 0.000000000
β 0.805228376 0.017568789 45.832890462 0.000000000

From the parameters estimated, the mean equation µt and the variance equation
were found to be significant at 1% level of significance for both data sets. As
expected the sum of the coefficients were less than one, in line with parameter
constraints.

(2a) AR(1)-APARCH(1,1) model TOP40 Index

yt = µ + ρlyt−l + εt, εt ∼ N(0, s2t ), sδt = ω + α(|εt−1| − γεt−1)
δ + βsδt−1

Table 7. AR(1)-A-PGARCH(1,1) parameter estimates TOP40
index demeaned log returns

AR-A-PGARCH model L=10882.45

TOP40 Estimate Std. Error t value Pr(>|t|)

µ 0.000446213 0.000180346 2.474207628 0.013353207
ρ 0.080278817 0.017703970 4.534509349 0.000005774
ω 0.000030027 0.000006429 4.670296083 0.000003008
α 0.103844502 0.010732953 9.675296537 0.000000000
γ 0.325353624 0.053181626 6.117782569 0.000000001
β 0.892995476 0.010132462 88.132132037 0.000000000
δ 1.480272914 0.162621382 9.102572470 0.000000000
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Table 8. AR(3)-A-PGARCH(1,1) parameter estimates NSE20 in-
dex daily log returns

AR-A-PGARCH model L=13110.36

NSE20 Estimate Std. Error t value Pr(>|t|)

ρ1 0.226269257 0.019044635 11.880997511 0.000000000
ρ2 0.147387126 0.018570537 7.936610879 0.000000000
ρ3 0.086177369 0.018178677 4.740574176 0.000002131
ω 0.000018443 0.000002941 6.272196128 0.000000000
α 0.157952998 0.013339433 11.841057583 0.000000000
γ -0.089074505 0.034001156 -2.619749316 0.008799443
β 0.825642118 0.016221437 50.898210315 0.000000000
δ 1.589747632 0.174237595 9.124021876 0.000000000

(2b) AR(3)-APARCH(1,1) NSE20 Index

yt = µ+ρlyt−l+ρ2yt−2+ρ3yt−3+εt, εt ∼ N(0, s2t ); sδt = ω+α(|εt−1|−γεt−1)δ+βsδt−1

The parameter δ for both indexes compares favourably with the value of d =
1.4875 investigated earlier under the absolute returns |yt|

d as reported in Figure 5.

5.2. Discussions. As a general observation, both markets seem to have an au-
tocorrelation model of order AR(1) for TOP40 and order three AR(3) for NSE20
index respectively. Conditioned on standard normal distribution, GARCH type
model seem to be calibrated and the resulting standardized residual has no element
of serial autocorrelation but heavy tailed i.i.d.(0, 1) as expected. All these results
are summarized in Tables 5, 6, 7, 8 respectively. In order to determine whether

Table 9. Likelihood values for all models studied and their re-
spective ranking based on χ2 test.

Model TOP40 Rank χ2 NSE20 RANK χ2

L L

GARCH-M 10852.42 4 60.06 13102.13 3 16.46
GARCH 10851.65 5 61.60 13100.03 4 20.66

A-PGARCH 10882.45 1 13110.36 1
TGARCH 10876.26 3 12.38 13097.18 5 32.36

GJR-GARCH 10876.32 2 12.26 13102.32 2 16.08

any of the four models are not the true underlying model at a given significance
level, a statistical test is required. The classical maximum likelihood ratio test is
used to differentiate between the various models. Let lo denote the log likelihood
values under the null hypothesis that the true model is one of the four models
(GARCH-M, GARCH, TGARCH, and GJR-GARCH) estimated, and let l repre-
sent the log likelihood value under the alternative hypothesis that the true model
is A-PGARCH. Consequently, 2(l− lo) is expected to follow a χ2 distribution with
2 degrees of freedom if the hypothesis holds true. The χ2 test values in Table 9
significantly surpass the critical values at the 5% level or any other reasonable level.
Therefore, we reject the idea that the data is generated by any of the other four
models examined, in favor of the A-PGARCH model.



LONG TERM MEMORY 11

5.3. Volatility asymmetry. If investors exhibit slow reactions to price increases
but tend to overreact during market declines, this behavior can exacerbate mar-
ket risks. This phenomenon may be a contributing factor to the emergence of
asymmetries in market volatility due to irrational investments. The asymmetry of
the A-PGARCH model is captured by the parameter γ. In addition, the relative
asymmetry introduced by [10] is calculated.

volatility asymmetry =
(1 + γ)

(1 − γ)δ

This metric measures the extent to which the response of volatility to a negative
shock exceeds its response to a positive shock. Volatility asymmetry was computed
for both indices, yielding a value of 2.3733 for the TOP40 index and 0.79537 for
the NSE20 index. These estimates closely resemble the findings reported in [11].

6. Conclusions

In both data sets, we found obvious clustered changing variance. In view of
modeling long term volatility, the autocorrelations of |yt|

d, d > 0 were investi-
gated and the result compared with A-PGARCH δ parameter which seems to tally.
This implies the presence of long term memory in both data sets. In this article, we
explored the A-PGARCH model and some of its extensions in the context of mod-
eling volatility of emerging markets. There is a strong evidence that both markets
exhibits long memory and asymmetry as supported in literature. Different ARCH
type models were compared against A-PGARCH model. Using log likelihood func-
tion estimate and the χ2 test, all other ARCH models were rejected in favor of
A-PGARCH model. The volatility structure for NSE20 index, differed consider-
ably between the two periods (before September 2002, and after September 2002).
The long term memory property that was found in NSE20 index was attributed to
the ”after September 2002 ” period. The autocorrelations of |yt|

d gave the largest
values and long lags of positive autocorrelations before becoming negative for the
first time.

Acknowledgements. The author would like to thank the anonymous referees for
their insightful comments that helped improve on the article.

References

[1] R.F. Engle, Autoregressive Conditional Heteroscedasticity With Estimates of Variance of

United Kingdom Inflation, Journal of Business and Economic Statistics 9 (1982) 987–1008.
[2] T. Bollerslev, Generalized autoregrssive conditional heteroskedasticity, Journal of Economet-

rics. 31 (1986) 307–327.
[3] Y. Li, P. A. Hamil, K. K. Opong, Do benchmark African equity indices exhibit the stylized

facts, Global finance. 21 (2010) 71–97.
[4] Z. Linz, Modeling and forecasting stock market volatility of SSE composite index using

GARCH models, Future generation computer systems. 79 (2018) 960–972.
[5] Z. C. Ding, W. J. Granger, R.F. Engle , A long memory property of stock market returns

and a new model, Journal of Empirical Finance. 1 (1993) 83–106.
[6] J. M. Maheu,H. T. Mccurdy, News arrival Jump dynamics and volatility components for

individual stock returns, The Journal of Mathematical Finance. 59 (2004) 755–793.

[7] L. R. Glosten, R. Jagannathan,D. Runkle, The relationship between expected value and the

volatility of the norminal excess returns on stocks, Journal of Finance 48 (1993), 1779–1801.
[8] D. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econmetrica)48

, (1991) 349–370.



12 JI.MWANIKI

[9] J.Zakoian, Threshold heteroskedastic models , Journal of Economic Dynamics and Control,
18 (1994) 931–955.

[10] S. Jayasuriya, Stock market liberalization and volatility in the presence of favorable market

characteristics and institutions, Emerging markets review 6 (2005) 170–191.
[11] R. Brooks, Power ARCH modeling of the volatility of emerging markets, Emerging markets

review8 (2007) 124–133.

University of Nairobi
Department of Mathematics, Faculty of science and Technology,
Postal Address 30196 -0100 Nairobi, Kenya

E-mail address: jimwaniki@uonbi.ac.ke


